C. Berthon, B. Braconnier, G. L. Dongmo Nguepi, C. Preux, Q. H. Tran
{"title":"A Relaxation Scheme for the Simulation of Two-Phase Flows With Inaccessible Pore Volume in Polymer Flooding","authors":"C. Berthon, B. Braconnier, G. L. Dongmo Nguepi, C. Preux, Q. H. Tran","doi":"10.1002/fld.5345","DOIUrl":null,"url":null,"abstract":"<p>The simulation of polymer injection in a reservoir is of paramount importance in enhanced oil recovery. Despite decades of research, the computation of polymer flows in porous media remains a challenging task. The main difficulty lies in the necessity to take into account the effect of <i>inaccessible pore volumes</i> (IPV), for which standard closure laws give rise to a weakly hyperbolic or even non-hyperbolic system. In the latter case, exponential instabilities may appear at the continuous level, which must be addressed at the discrete level so as to prevent a premature stop of the numerical simulations. The notion of IPV was introduced by engineers in order to account for the following observation: when a polymer solution is injected into an initial core saturated with water, the breakthrough of the polymer at the exit occurs before that of the water in which it is injected. It seems that due to their large size, the polymer molecules cannot insinuate themselves into all pores as well as water. Having less volume to flood, the polymer molecules see their speed increased, hence the ad hoc acceleration factor associated with the polymer. In this work, we propose a relaxation method that guarantees some practical robustness for all IPV laws. This is achieved by replacing the original system by a relaxation model which is always hyperbolic. The designed relaxation model involves two parameters which enable us not only to adjust the correct amount of numerical dissipation, but also to ensure positivity for some critical quantities such as water saturation and polymer concentration. Extensive numerical tests are performed in order to compare the relaxation scheme to the more classical upwind scheme for several IPV laws.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 3","pages":"244-266"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5345","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The simulation of polymer injection in a reservoir is of paramount importance in enhanced oil recovery. Despite decades of research, the computation of polymer flows in porous media remains a challenging task. The main difficulty lies in the necessity to take into account the effect of inaccessible pore volumes (IPV), for which standard closure laws give rise to a weakly hyperbolic or even non-hyperbolic system. In the latter case, exponential instabilities may appear at the continuous level, which must be addressed at the discrete level so as to prevent a premature stop of the numerical simulations. The notion of IPV was introduced by engineers in order to account for the following observation: when a polymer solution is injected into an initial core saturated with water, the breakthrough of the polymer at the exit occurs before that of the water in which it is injected. It seems that due to their large size, the polymer molecules cannot insinuate themselves into all pores as well as water. Having less volume to flood, the polymer molecules see their speed increased, hence the ad hoc acceleration factor associated with the polymer. In this work, we propose a relaxation method that guarantees some practical robustness for all IPV laws. This is achieved by replacing the original system by a relaxation model which is always hyperbolic. The designed relaxation model involves two parameters which enable us not only to adjust the correct amount of numerical dissipation, but also to ensure positivity for some critical quantities such as water saturation and polymer concentration. Extensive numerical tests are performed in order to compare the relaxation scheme to the more classical upwind scheme for several IPV laws.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.