{"title":"Solid-State Ion Exchange of Organic Ammonium Cations in Molecular Crystals","authors":"Mizuki Ito, Jun Manabe, Katsuya Inoue, Yin Qian, Xiao-Ming Ren, Tomoyuki Akutagawa, Takayoshi Nakamura, Sadafumi Nishihara","doi":"10.1002/ejic.202400675","DOIUrl":null,"url":null,"abstract":"<p>Artificial ion channels and transporters designed to recognise and transport specific ions and molecules have been extensively studied. These biomimetic single-crystal materials have gained particular attention for their potential to reveal the complex mechanisms of biological functions and to provide functionalities based on molecular design. In the present study, we found that Li<sup>+</sup> ions in the ion channels of Li<sub>2</sub>([18]crown-6)<sub>3</sub>[Ni(dmit)<sub>2</sub>]<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> (<b>1</b>) crystals exchange with R-NH<sub>3</sub><sup>+</sup> (R=Me, Et, <i>n</i>Pr) ions in aqueous solution. After ion exchange, the resultant (R-NH<sub>3</sub><sup>+</sup>)([18]crown-6)[Ni(dmit)<sub>2</sub>]<sup>−</sup> (<b>1-R</b>, R=Me, Et, <i>n</i>Pr) crystals are missing one [18]crown-6 molecule per two cations compared to <b>1</b>. During ion exchange, some of the [18]crown-6 molecules, which constitute the channels, are released into the aqueous solution along with Li<sup>+</sup> ions. The ion exchange of <b>1</b> in mixed aqueous solutions of organic ammonium cations shows selectivity for MeNH<sub>3</sub><sup>+</sup>, which is attributed to the stability of the <b>1-Me</b>. These results demonstrate the potential for transporting molecular cations in channel structures composed of crown ethers, which will facilitate the development of transporters for drugs and other substances essential for biological functions.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"28 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202400675","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202400675","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial ion channels and transporters designed to recognise and transport specific ions and molecules have been extensively studied. These biomimetic single-crystal materials have gained particular attention for their potential to reveal the complex mechanisms of biological functions and to provide functionalities based on molecular design. In the present study, we found that Li+ ions in the ion channels of Li2([18]crown-6)3[Ni(dmit)2]2(H2O)4 (1) crystals exchange with R-NH3+ (R=Me, Et, nPr) ions in aqueous solution. After ion exchange, the resultant (R-NH3+)([18]crown-6)[Ni(dmit)2]− (1-R, R=Me, Et, nPr) crystals are missing one [18]crown-6 molecule per two cations compared to 1. During ion exchange, some of the [18]crown-6 molecules, which constitute the channels, are released into the aqueous solution along with Li+ ions. The ion exchange of 1 in mixed aqueous solutions of organic ammonium cations shows selectivity for MeNH3+, which is attributed to the stability of the 1-Me. These results demonstrate the potential for transporting molecular cations in channel structures composed of crown ethers, which will facilitate the development of transporters for drugs and other substances essential for biological functions.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.