Influence of Ocean Model Horizontal Resolution on the Representation of Global Annual-To-Multidecadal Coastal Sea Level Variability

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY Journal of Geophysical Research-Oceans Pub Date : 2024-12-23 DOI:10.1029/2024JC021679
Christopher M. Little, Stephen G. Yeager, Rui M. Ponte, Ping Chang, Who M. Kim
{"title":"Influence of Ocean Model Horizontal Resolution on the Representation of Global Annual-To-Multidecadal Coastal Sea Level Variability","authors":"Christopher M. Little,&nbsp;Stephen G. Yeager,&nbsp;Rui M. Ponte,&nbsp;Ping Chang,&nbsp;Who M. Kim","doi":"10.1029/2024JC021679","DOIUrl":null,"url":null,"abstract":"<p>Emerging high-resolution global ocean climate models are expected to improve both hindcasts and forecasts of coastal sea level variability by better resolving ocean turbulence and other small-scale phenomena. To examine this hypothesis, we compare annual to multidecadal coastal sea level variability over the 1993–2018 period, as observed by tide gauges and as simulated by two identically forced ocean models, at <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>1</mn>\n <mo>°</mo>\n </mrow>\n <annotation> ${\\sim} 1{}^{\\circ}$</annotation>\n </semantics></math> (LR) and <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>0.1</mn>\n <mo>°</mo>\n </mrow>\n <annotation> ${\\sim} 0.1{}^{\\circ}$</annotation>\n </semantics></math> (HR) horizontal resolution. Differences between HR and LR, and misfits with tide gauges, are spatially coherent at regional alongcoast scales. Resolution-related improvements are largest in, and near, marginal seas. Near attached western boundary currents, sea level variance is several times greater in HR than LR, but correlations with observations may be reduced, due to intrinsic ocean variability. Globally, in HR simulations, intrinsic variability comprises from zero to over 80% of coastal sea level variance. Outside of eddy-rich regions, simulated coastal sea level variability is generally damped relative to observations. We hypothesize that weak coastal variability is related to large-scale, remotely forced, variability; in both HR and LR, tropical sea level variance is underestimated by <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>50% relative to satellite altimetric observations. Similar coastal dynamical regimes (e.g., attached western boundary currents) exhibit a consistent sensitivity to horizontal resolution, suggesting that these findings are generalizable to regions with limited coastal observations.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021679","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging high-resolution global ocean climate models are expected to improve both hindcasts and forecasts of coastal sea level variability by better resolving ocean turbulence and other small-scale phenomena. To examine this hypothesis, we compare annual to multidecadal coastal sea level variability over the 1993–2018 period, as observed by tide gauges and as simulated by two identically forced ocean models, at 1 ° ${\sim} 1{}^{\circ}$ (LR) and 0.1 ° ${\sim} 0.1{}^{\circ}$ (HR) horizontal resolution. Differences between HR and LR, and misfits with tide gauges, are spatially coherent at regional alongcoast scales. Resolution-related improvements are largest in, and near, marginal seas. Near attached western boundary currents, sea level variance is several times greater in HR than LR, but correlations with observations may be reduced, due to intrinsic ocean variability. Globally, in HR simulations, intrinsic variability comprises from zero to over 80% of coastal sea level variance. Outside of eddy-rich regions, simulated coastal sea level variability is generally damped relative to observations. We hypothesize that weak coastal variability is related to large-scale, remotely forced, variability; in both HR and LR, tropical sea level variance is underestimated by ${\sim} $ 50% relative to satellite altimetric observations. Similar coastal dynamical regimes (e.g., attached western boundary currents) exhibit a consistent sensitivity to horizontal resolution, suggesting that these findings are generalizable to regions with limited coastal observations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
期刊最新文献
Large-Scale Ocean-Atmosphere Interactions Drive Phytoplankton Accumulation in the Northern Antarctic Peninsula Potential Remineralization of Terrestrial Organic Matter in the Sediments of the New Britain Trench Revealed by Optical and Molecular Properties of the Water-Extracted Dissolved Organic Matter Hurricane-Driven Transport of Bermuda Reef Carbonate Platform Sediments to the Deep Ocean The Impact of Anomalous Biomass Burning on Phytoplankton and Surface Ocean Carbon Pool in the Indo-China Peninsula An Intermediate Current in Tropical North Pacific Observed by Moored Current Meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1