Effect of Biofloc Culture on the Daily Rhythmicity of the Activity and Expression of Digestive Enzymes in Tilapia, Oreochromis niloticus

IF 3 2区 农林科学 Q1 FISHERIES Aquaculture Nutrition Pub Date : 2025-01-23 DOI:10.1155/anu/6617425
María del Carmen Monroy-Dosta, Daniel Becerril-Cortés, Juan Pablo Lazo, Arturo Mena-López, Pilar Negrete-Redondo, Eliasid Nogueda-Torres, Carmen Navarro-Guillén, José Antonio Mata-Sotres
{"title":"Effect of Biofloc Culture on the Daily Rhythmicity of the Activity and Expression of Digestive Enzymes in Tilapia, Oreochromis niloticus","authors":"María del Carmen Monroy-Dosta,&nbsp;Daniel Becerril-Cortés,&nbsp;Juan Pablo Lazo,&nbsp;Arturo Mena-López,&nbsp;Pilar Negrete-Redondo,&nbsp;Eliasid Nogueda-Torres,&nbsp;Carmen Navarro-Guillén,&nbsp;José Antonio Mata-Sotres","doi":"10.1155/anu/6617425","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Biofloc technology (BFT) has recently attracted great attention due to minimal water exchange and reduced feed intake. This study aimed to recognize daily changes in the digestive physiology of <i>Oreochromis niloticus</i> between a traditional system and BFT. The enzyme activity of trypsin (try), chymotrypsin (chy), leucine aminopeptidase (lap), alkaline proteases (alk), lipase (lip), and amylase (amy), along with the gene expression of trypsin (<i>try</i>), chymotrypsin (<i>chy</i>), pepsin (<i>pep</i>), amylase (<i>amy</i>), and phospholipase (<i>pla</i>) were measured throughout a daily cycle. Samples were taken every 4 h in a 24 h cycle under a 12:12 L:D photoperiod. During 60 days, fish were feed three times a day (zeitgeber time, ZT: 0, 4, and 8) with a fishmeal-based diet containing 32% of crude protein and 5% of lipid, where molasses was added as a carbon source in BFT. No significant differences were found in fish performance among treatments at the end of the experiment. The activity of all tested enzymes significantly (<i>p</i> &lt; 0.05) increases during the dark period in both treatments, where the same activity pattern was found in try and lip. The maximum expression levels of digestive gene enzymes between treatments show a marked effect dependent on the presence of light and dark phases. The cosinor analysis showed an activity in try, lap, and lip with a significant rhythmicity (<i>p</i> &lt; 0.05). Our results demonstrate that some processes related to the digestive physiology of tilapia that respond directly to daily rhythmicity are modified under the constant presence of feed in BFT. These findings should be considered when establishing new optimized culture protocols.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/6617425","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/6617425","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Biofloc technology (BFT) has recently attracted great attention due to minimal water exchange and reduced feed intake. This study aimed to recognize daily changes in the digestive physiology of Oreochromis niloticus between a traditional system and BFT. The enzyme activity of trypsin (try), chymotrypsin (chy), leucine aminopeptidase (lap), alkaline proteases (alk), lipase (lip), and amylase (amy), along with the gene expression of trypsin (try), chymotrypsin (chy), pepsin (pep), amylase (amy), and phospholipase (pla) were measured throughout a daily cycle. Samples were taken every 4 h in a 24 h cycle under a 12:12 L:D photoperiod. During 60 days, fish were feed three times a day (zeitgeber time, ZT: 0, 4, and 8) with a fishmeal-based diet containing 32% of crude protein and 5% of lipid, where molasses was added as a carbon source in BFT. No significant differences were found in fish performance among treatments at the end of the experiment. The activity of all tested enzymes significantly (p < 0.05) increases during the dark period in both treatments, where the same activity pattern was found in try and lip. The maximum expression levels of digestive gene enzymes between treatments show a marked effect dependent on the presence of light and dark phases. The cosinor analysis showed an activity in try, lap, and lip with a significant rhythmicity (p < 0.05). Our results demonstrate that some processes related to the digestive physiology of tilapia that respond directly to daily rhythmicity are modified under the constant presence of feed in BFT. These findings should be considered when establishing new optimized culture protocols.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
期刊最新文献
Multifaceted Role of Probiotics in Enhancing Health and Growth of Aquatic Animals: Mechanisms, Benefits, and Applications in Sustainable Aquaculture—A Review and Bibliometric Analysis Dietary Melatonin Boosts Reproduction and Growth Performance of Ornamental Fish Giant Danio (Devario aequipinnatus): A Transformative Approach for Scrapping Wild-Caught Fish Business Effects of Dietary Phosphatidylcholine Supplementation on Growth Performance, Antioxidant Capacity, Fatty Acid Composition, and Lipid Metabolism of Juvenile Eriocheir sinensis-Fed Different Oil Sources Crosstalk Between Protein Restriction and Fasting and Its Impacts on Growth, Digestive Enzymes, Immunity, Antioxidant Activity, and Relative Genes of Whiteleg Shrimp (Litopenaeus vannamei) Effects of Dietary Vitamin A on the Growth Performance, Nonspecific Immune Response, Shell Microbiota and Red Spotted Disease Resistance of Juvenile Sea Urchin (Strongylocentrotus intermedius)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1