María del Carmen Monroy-Dosta, Daniel Becerril-Cortés, Juan Pablo Lazo, Arturo Mena-López, Pilar Negrete-Redondo, Eliasid Nogueda-Torres, Carmen Navarro-Guillén, José Antonio Mata-Sotres
{"title":"Effect of Biofloc Culture on the Daily Rhythmicity of the Activity and Expression of Digestive Enzymes in Tilapia, Oreochromis niloticus","authors":"María del Carmen Monroy-Dosta, Daniel Becerril-Cortés, Juan Pablo Lazo, Arturo Mena-López, Pilar Negrete-Redondo, Eliasid Nogueda-Torres, Carmen Navarro-Guillén, José Antonio Mata-Sotres","doi":"10.1155/anu/6617425","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Biofloc technology (BFT) has recently attracted great attention due to minimal water exchange and reduced feed intake. This study aimed to recognize daily changes in the digestive physiology of <i>Oreochromis niloticus</i> between a traditional system and BFT. The enzyme activity of trypsin (try), chymotrypsin (chy), leucine aminopeptidase (lap), alkaline proteases (alk), lipase (lip), and amylase (amy), along with the gene expression of trypsin (<i>try</i>), chymotrypsin (<i>chy</i>), pepsin (<i>pep</i>), amylase (<i>amy</i>), and phospholipase (<i>pla</i>) were measured throughout a daily cycle. Samples were taken every 4 h in a 24 h cycle under a 12:12 L:D photoperiod. During 60 days, fish were feed three times a day (zeitgeber time, ZT: 0, 4, and 8) with a fishmeal-based diet containing 32% of crude protein and 5% of lipid, where molasses was added as a carbon source in BFT. No significant differences were found in fish performance among treatments at the end of the experiment. The activity of all tested enzymes significantly (<i>p</i> < 0.05) increases during the dark period in both treatments, where the same activity pattern was found in try and lip. The maximum expression levels of digestive gene enzymes between treatments show a marked effect dependent on the presence of light and dark phases. The cosinor analysis showed an activity in try, lap, and lip with a significant rhythmicity (<i>p</i> < 0.05). Our results demonstrate that some processes related to the digestive physiology of tilapia that respond directly to daily rhythmicity are modified under the constant presence of feed in BFT. These findings should be considered when establishing new optimized culture protocols.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/6617425","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/6617425","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Biofloc technology (BFT) has recently attracted great attention due to minimal water exchange and reduced feed intake. This study aimed to recognize daily changes in the digestive physiology of Oreochromis niloticus between a traditional system and BFT. The enzyme activity of trypsin (try), chymotrypsin (chy), leucine aminopeptidase (lap), alkaline proteases (alk), lipase (lip), and amylase (amy), along with the gene expression of trypsin (try), chymotrypsin (chy), pepsin (pep), amylase (amy), and phospholipase (pla) were measured throughout a daily cycle. Samples were taken every 4 h in a 24 h cycle under a 12:12 L:D photoperiod. During 60 days, fish were feed three times a day (zeitgeber time, ZT: 0, 4, and 8) with a fishmeal-based diet containing 32% of crude protein and 5% of lipid, where molasses was added as a carbon source in BFT. No significant differences were found in fish performance among treatments at the end of the experiment. The activity of all tested enzymes significantly (p < 0.05) increases during the dark period in both treatments, where the same activity pattern was found in try and lip. The maximum expression levels of digestive gene enzymes between treatments show a marked effect dependent on the presence of light and dark phases. The cosinor analysis showed an activity in try, lap, and lip with a significant rhythmicity (p < 0.05). Our results demonstrate that some processes related to the digestive physiology of tilapia that respond directly to daily rhythmicity are modified under the constant presence of feed in BFT. These findings should be considered when establishing new optimized culture protocols.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.