{"title":"The performance of a high-resolution satellite-derived precipitation product over the topographically complex landscape of Eswatini","authors":"Wisdom M. D. Dlamini, Samkele S. Tfwala","doi":"10.1002/gdj3.278","DOIUrl":null,"url":null,"abstract":"<p>The study evaluated the use of Climate Hazard Group InfraRed Precipitation with Stations (CHIRPS) data for monitoring rainfall data in Eswatini. Various statistical metrics such as Bias, correlation coefficient (<i>r</i>), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the CHIRPS 2.0 data against 14 rain gauge observations acquired during 1981–2020. CHIRPS 2.0 rainfall agrees well with rain gauge precipitation at monthly (<i>r</i> = 0.73, Bias = 1.02, RMSE = 50.44 and MAD = 31.44), seasonal (<i>r</i> = 0.77, Bias = 1.01, RMSE = 36.99 and MAD = 24.15) and annual scales (<i>r</i> = 0.65, Bias = 2.46, RMSE = 500.78 and MAD = 468.06). Moreover, areas characterized by complex topography and land use, and areas in transition zones (to a different agroecological zone) had generally poor correlations. Nonetheless, CHIRPS 2.0 captures well the spatial distribution of rainfall in the different agroecological zones of Eswatini, even in areas with no rain gauge data. In conclusion, CHIRPS 2.0 can be a very valuable tool in filling gaps created by poor spatial coverage of ground-based rain gauges, especially in the developing world where this is often the case.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.278","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.278","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study evaluated the use of Climate Hazard Group InfraRed Precipitation with Stations (CHIRPS) data for monitoring rainfall data in Eswatini. Various statistical metrics such as Bias, correlation coefficient (r), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the CHIRPS 2.0 data against 14 rain gauge observations acquired during 1981–2020. CHIRPS 2.0 rainfall agrees well with rain gauge precipitation at monthly (r = 0.73, Bias = 1.02, RMSE = 50.44 and MAD = 31.44), seasonal (r = 0.77, Bias = 1.01, RMSE = 36.99 and MAD = 24.15) and annual scales (r = 0.65, Bias = 2.46, RMSE = 500.78 and MAD = 468.06). Moreover, areas characterized by complex topography and land use, and areas in transition zones (to a different agroecological zone) had generally poor correlations. Nonetheless, CHIRPS 2.0 captures well the spatial distribution of rainfall in the different agroecological zones of Eswatini, even in areas with no rain gauge data. In conclusion, CHIRPS 2.0 can be a very valuable tool in filling gaps created by poor spatial coverage of ground-based rain gauges, especially in the developing world where this is often the case.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.