Quantum teleportation in higher dimension and entanglement distribution via quantum switches

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2025-01-24 DOI:10.1049/qtc2.12122
Indrakshi Dey, Nicola Marchetti
{"title":"Quantum teleportation in higher dimension and entanglement distribution via quantum switches","authors":"Indrakshi Dey,&nbsp;Nicola Marchetti","doi":"10.1049/qtc2.12122","DOIUrl":null,"url":null,"abstract":"<p>High-dimensional quantum states, or ‘qudits’, provide significant advantages over traditional qubits in quantum communication, such as increased information capacity, enhanced noise resilience, and reduced information loss. Despite these benefits, their implementation has been constrained by challenges in generation, transmission, and detection. This paper presents a novel theoretical framework for transmitting quantum information using qudit entanglement distribution over a superposition of causal orders in two quantum channels. Using this model, a quantum switch operation for 2-qudit systems is introduced, which facilitates enhanced fidelity of entanglement distribution and quantum teleportation. The results demonstrate that the use of qudits in entanglement distribution achieves a fidelity improvement from 0.5 (for qubit-based systems) to 0.94 for 20-dimensional qudits, even under noisy channel conditions. This enhancement is achieved by exploiting the increased Hilbert space of high-dimensional states and the inherent noise-resilience properties of quantum switches operating in superpositions of causal orders. The findings underscore the potential of qudit-based quantum systems in achieving robust and high-fidelity communication in environments where traditional qubit-based systems face limitations.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"6 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-dimensional quantum states, or ‘qudits’, provide significant advantages over traditional qubits in quantum communication, such as increased information capacity, enhanced noise resilience, and reduced information loss. Despite these benefits, their implementation has been constrained by challenges in generation, transmission, and detection. This paper presents a novel theoretical framework for transmitting quantum information using qudit entanglement distribution over a superposition of causal orders in two quantum channels. Using this model, a quantum switch operation for 2-qudit systems is introduced, which facilitates enhanced fidelity of entanglement distribution and quantum teleportation. The results demonstrate that the use of qudits in entanglement distribution achieves a fidelity improvement from 0.5 (for qubit-based systems) to 0.94 for 20-dimensional qudits, even under noisy channel conditions. This enhancement is achieved by exploiting the increased Hilbert space of high-dimensional states and the inherent noise-resilience properties of quantum switches operating in superpositions of causal orders. The findings underscore the potential of qudit-based quantum systems in achieving robust and high-fidelity communication in environments where traditional qubit-based systems face limitations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Quantum teleportation in higher dimension and entanglement distribution via quantum switches Real-time seedless post-processing for quantum random number generators Quantum blockchain: Trends, technologies, and future directions Quantum anonymous one vote veto protocol based on entanglement swapping Enhanced QSVM with elitist non-dominated sorting genetic optimisation algorithm for breast cancer diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1