{"title":"Multi-Responsive Hydrogel Based on Sodium Alginate With Acrylic Acid and Methacrylic Acid: Impact on Normal and Cancerous Cells","authors":"Krishtan Pal, Sheetal Jaiswal, Paramjeet Yadav, Rajesh Kumar, Tarun Minocha, Sanjeev Kumar Yadav","doi":"10.1002/pol.20240804","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The application of sodium alginate (SA) in the field of hydrogels has attracted much attention. However, it remains challenging to fabricate sodium alginate-based biocompatible hydrogels with improved strength, high elasticity, porosity, and extraordinary adhesiveness. Herein, a hydrogel is constructed by SA and a copolymer of acrylic acid (AA) and meth acrylic acid (MAA), was synthesized via a free-radical polymerization (FRP) and reinforced by using dynamic cross-linker (Fe<sup>2+</sup>/Fe<sup>3+</sup>) with their carboxylate groups (COO<sup>−</sup>) like a chelating complex. The XPS validates the <i>presence</i> of dynamic Fe<sup>2+</sup> (711 eV)/Fe<sup>3+</sup> (714 eV) ions in the hydrogel scaffold. Porous structure contributes to improving the swelling rate (400%) which assists in drug delivery (80%) applications. The hydrogel has a well-interconnected network with a crossover point (G′ = G″) at 120 Pa with 8.52% strain and various factors viz. frequency temperature and time sweep study affect the gelation. The hydrogel exhibits a substantial surface area (25m<sup>2</sup>/g), pore depth size up to 350 nm, and height distribution histogram average size of 394 nm. The poly(AA-co-MAA) copolymer found actively targeting breast cancer MDA-MB-231 cells and exhibited biocompatibility against HEK-293 cells and useful in water soluble controlled drug delivery.</p>\n </div>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 3","pages":"578-594"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240804","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The application of sodium alginate (SA) in the field of hydrogels has attracted much attention. However, it remains challenging to fabricate sodium alginate-based biocompatible hydrogels with improved strength, high elasticity, porosity, and extraordinary adhesiveness. Herein, a hydrogel is constructed by SA and a copolymer of acrylic acid (AA) and meth acrylic acid (MAA), was synthesized via a free-radical polymerization (FRP) and reinforced by using dynamic cross-linker (Fe2+/Fe3+) with their carboxylate groups (COO−) like a chelating complex. The XPS validates the presence of dynamic Fe2+ (711 eV)/Fe3+ (714 eV) ions in the hydrogel scaffold. Porous structure contributes to improving the swelling rate (400%) which assists in drug delivery (80%) applications. The hydrogel has a well-interconnected network with a crossover point (G′ = G″) at 120 Pa with 8.52% strain and various factors viz. frequency temperature and time sweep study affect the gelation. The hydrogel exhibits a substantial surface area (25m2/g), pore depth size up to 350 nm, and height distribution histogram average size of 394 nm. The poly(AA-co-MAA) copolymer found actively targeting breast cancer MDA-MB-231 cells and exhibited biocompatibility against HEK-293 cells and useful in water soluble controlled drug delivery.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.