A hybrid network for three-dimensional seismic fault segmentation based on nested residual attention and self-attention mechanism

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geophysical Prospecting Pub Date : 2024-12-26 DOI:10.1111/1365-2478.13655
Qifeng Sun, Hui Jiang, Qizhen Du, Faming Gong
{"title":"A hybrid network for three-dimensional seismic fault segmentation based on nested residual attention and self-attention mechanism","authors":"Qifeng Sun,&nbsp;Hui Jiang,&nbsp;Qizhen Du,&nbsp;Faming Gong","doi":"10.1111/1365-2478.13655","DOIUrl":null,"url":null,"abstract":"<p>Fault detection is a crucial step in seismotectonic interpretation and oil–gas exploration. In recent years, deep learning has gradually proven to be an effective approach for detecting faults. Due to complex geological structures and seismic noise, detection results of such approaches remain unsatisfactory. In this study, we propose a hybrid network (NRA-SANet) that integrates a self-attention mechanism into a nested residual attention network for a three-dimensional seismic fault segmentation task. In NRA-SANet, the nested residual coding structure is designed to fuse multi-scale fault features, which can fully mine fine-grained fault information. The two-head self-attention decoding structure is designed to construct long-distance fault dependencies from different feature representation subspaces, which can enhance the understanding of the model regarding the global fault distribution. In order to suppress the interference of seismic noise, we propose a fault-attention module and embed it into the model. It utilizes the weighted and the separate-and-reconstruct channel strategy to improve the model sensitivity to fault areas. Experiments demonstrate that NRA-SANet exhibits strong noise robustness, while it can also detect more continuous and more small-scale faults than other approaches on field seismic data. This study provides a new idea to promote the development of seismic interpretation.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 2","pages":"575-594"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13655","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fault detection is a crucial step in seismotectonic interpretation and oil–gas exploration. In recent years, deep learning has gradually proven to be an effective approach for detecting faults. Due to complex geological structures and seismic noise, detection results of such approaches remain unsatisfactory. In this study, we propose a hybrid network (NRA-SANet) that integrates a self-attention mechanism into a nested residual attention network for a three-dimensional seismic fault segmentation task. In NRA-SANet, the nested residual coding structure is designed to fuse multi-scale fault features, which can fully mine fine-grained fault information. The two-head self-attention decoding structure is designed to construct long-distance fault dependencies from different feature representation subspaces, which can enhance the understanding of the model regarding the global fault distribution. In order to suppress the interference of seismic noise, we propose a fault-attention module and embed it into the model. It utilizes the weighted and the separate-and-reconstruct channel strategy to improve the model sensitivity to fault areas. Experiments demonstrate that NRA-SANet exhibits strong noise robustness, while it can also detect more continuous and more small-scale faults than other approaches on field seismic data. This study provides a new idea to promote the development of seismic interpretation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
期刊最新文献
Issue Information Amendment to ‘Third-order elasticity of transversely isotropic field shales’ Corrigendum to “Elastic full waveform inversion for tilted transverse isotropic media: A multi-step strategy accounting for a symmetry axis tilt angle” Three-dimensional gravity forward modelling based on rectilinear grid and Block–Toeplitz Toeplitz–Block methods Unsupervised learning inversion of seismic velocity models based on a multi-scale strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1