Holocene Temperature Trend Inferred From Oxygen and Carbonate Clumped Isotope Profiles of a Stalagmite Collected From a Maritime Area of Central Honshu, Japan
{"title":"Holocene Temperature Trend Inferred From Oxygen and Carbonate Clumped Isotope Profiles of a Stalagmite Collected From a Maritime Area of Central Honshu, Japan","authors":"Akira Murata, Taiki Mori, Hirokazu Kato, Hsun-Ming Hu, Chuan-Chou Shen, Ryoko Senda, Kenji Kashiwagi, Akihiro Kano","doi":"10.1111/iar.70002","DOIUrl":null,"url":null,"abstract":"<p>The Holocene has been extensively researched concerning past climates, and various proxy records have provided information on temperature changes during this period. Many studies have found a period of elevated temperatures during the Middle Holocene, known as the Holocene Thermal Maximum (HTM). However, the exact timing of this warm period varies depending on the region. Here, we investigate a stalagmite collected from Kiriana Cave, which covers two intervals: 13.7–12.4 and 10.4–1.16 thousand years ago (ka before 1950 AD). In previous studies at this cave site, the meteoric water δ<sup>18</sup>O is not sensitive to the precipitation amount and the seasonality of precipitation but follows the seawater δ<sup>18</sup>O. By using these assumptions of the meteoric water δ<sup>18</sup>O, the paleo-temperature was quantitatively reconstructed from the stalagmite δ<sup>18</sup>O and the carbonate clumped isotopes. These paleoclimatic proxies indicated that the temperature at the cave site significantly changed during the Holocene. Based on the records of the stalagmite δ<sup>18</sup>O, the HTM occurred between 10.9 and 6.7 ka, reaching its peak temperature (15.0°C) around 7.0 ka. At this time, temperatures were approximately 3°C warmer than present. The timing of the warm interval aligns closely with marine temperature records but is notably earlier than terrestrial records from Europe and North America. Cooling began at 6.5 ka, and the decreased temperature stabilized in an interval between 6.0 and 4.5 ka. The temperature decreased further to the lowest value (~10.0°C) at 3.0 ka. After this cooling maximum, the climate gradually became warm until the stalagmite stopped growing at 1.16 ka. Our Holocene temperature reconstruction is consistent with the temperature and palaeoceanographic records obtained from reef corals and marine sediments in and around the Japanese Islands in terms of the amplitude of change, warm middle Holocene, and cool late Holocene.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"34 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.70002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Holocene has been extensively researched concerning past climates, and various proxy records have provided information on temperature changes during this period. Many studies have found a period of elevated temperatures during the Middle Holocene, known as the Holocene Thermal Maximum (HTM). However, the exact timing of this warm period varies depending on the region. Here, we investigate a stalagmite collected from Kiriana Cave, which covers two intervals: 13.7–12.4 and 10.4–1.16 thousand years ago (ka before 1950 AD). In previous studies at this cave site, the meteoric water δ18O is not sensitive to the precipitation amount and the seasonality of precipitation but follows the seawater δ18O. By using these assumptions of the meteoric water δ18O, the paleo-temperature was quantitatively reconstructed from the stalagmite δ18O and the carbonate clumped isotopes. These paleoclimatic proxies indicated that the temperature at the cave site significantly changed during the Holocene. Based on the records of the stalagmite δ18O, the HTM occurred between 10.9 and 6.7 ka, reaching its peak temperature (15.0°C) around 7.0 ka. At this time, temperatures were approximately 3°C warmer than present. The timing of the warm interval aligns closely with marine temperature records but is notably earlier than terrestrial records from Europe and North America. Cooling began at 6.5 ka, and the decreased temperature stabilized in an interval between 6.0 and 4.5 ka. The temperature decreased further to the lowest value (~10.0°C) at 3.0 ka. After this cooling maximum, the climate gradually became warm until the stalagmite stopped growing at 1.16 ka. Our Holocene temperature reconstruction is consistent with the temperature and palaeoceanographic records obtained from reef corals and marine sediments in and around the Japanese Islands in terms of the amplitude of change, warm middle Holocene, and cool late Holocene.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.