Local Generation of Mirror Modes by Pickup Protons at Mars

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-01-27 DOI:10.1029/2024JA033275
C. Simon Wedlund, C. Mazelle, K. Meziane, C. Bertucci, M. Volwerk, L. Preisser, D. Schmid, J. Halekas, J. McFadden, D. Mitchell, J. Espley, P. Henri
{"title":"Local Generation of Mirror Modes by Pickup Protons at Mars","authors":"C. Simon Wedlund,&nbsp;C. Mazelle,&nbsp;K. Meziane,&nbsp;C. Bertucci,&nbsp;M. Volwerk,&nbsp;L. Preisser,&nbsp;D. Schmid,&nbsp;J. Halekas,&nbsp;J. McFadden,&nbsp;D. Mitchell,&nbsp;J. Espley,&nbsp;P. Henri","doi":"10.1029/2024JA033275","DOIUrl":null,"url":null,"abstract":"<p>Mirror mode structures are born from a plasma instability driven by a large temperature anisotropy and appear downstream of planetary and interplanetary shocks, in their magnetosheath. As so-called “magnetic bottles” imprisoning dense and hot plasma, they are usually observed downstream of their region of formation, where the anisotropy is large and free energy is available, implying that they are advected with the plasma flow to the detection region. At Earth and other planets, the quasi-perpendicular shock provides the plasma with the necessary heating along the perpendicular direction to the local magnetic field. At Mars, which boasts an extended exosphere, an additional source of temperature anisotropy exists, through unstable ring-beam velocity distributions, that is, through ions locally ionized and subsequently picked up by the local electric fields. We report here for the first time an example of near locally-generated mirror mode structures due to pickup protons at Mars using the full plasma instrument suite on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We present events with mirror modes in quasi-perpendicular and quasi-parallel shock conditions, discuss the locality of their generation and show that, in addition to the classic quasi-perpendicular source of anisotropy, another source exists, that is, unstable pickup protons. The existence at Mars of this extra ion anisotropy-generating mechanism is reminiscent of comets.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033275","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mirror mode structures are born from a plasma instability driven by a large temperature anisotropy and appear downstream of planetary and interplanetary shocks, in their magnetosheath. As so-called “magnetic bottles” imprisoning dense and hot plasma, they are usually observed downstream of their region of formation, where the anisotropy is large and free energy is available, implying that they are advected with the plasma flow to the detection region. At Earth and other planets, the quasi-perpendicular shock provides the plasma with the necessary heating along the perpendicular direction to the local magnetic field. At Mars, which boasts an extended exosphere, an additional source of temperature anisotropy exists, through unstable ring-beam velocity distributions, that is, through ions locally ionized and subsequently picked up by the local electric fields. We report here for the first time an example of near locally-generated mirror mode structures due to pickup protons at Mars using the full plasma instrument suite on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We present events with mirror modes in quasi-perpendicular and quasi-parallel shock conditions, discuss the locality of their generation and show that, in addition to the classic quasi-perpendicular source of anisotropy, another source exists, that is, unstable pickup protons. The existence at Mars of this extra ion anisotropy-generating mechanism is reminiscent of comets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
The Spreading of Magnetic Reconnection X-Line in Particle-In-Cell Simulations– Mechanism and the Effect of Drift-Kink Instability A 3-D FDTD Methodology for Modeling the Propagation of VLF Whistler Mode PLHR Waves Through the Ionosphere “Polar” Substorms During Slow Solar Wind Characteristics of Wave-Particle Power Transfer as a Function of Electron Pitch Angle in Nonlinear Frequency Chirping Jupiter's Auroral Ionosphere: Juno Microwave Radiometer Observations of Energetic Electron Precipitation Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1