A Single-Layer Wideband Differentially-Fed Dual-Polarized Filtenna With Low Cross-Polarization

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Microwave and Optical Technology Letters Pub Date : 2024-12-27 DOI:10.1002/mop.70074
Dajiang Li, Xinzhou Huang, Fan Yang, De-Yi Xiong, Xin Kang, Kun-Zhi Hu, Zhiyuan Chen, Dong Yan
{"title":"A Single-Layer Wideband Differentially-Fed Dual-Polarized Filtenna With Low Cross-Polarization","authors":"Dajiang Li,&nbsp;Xinzhou Huang,&nbsp;Fan Yang,&nbsp;De-Yi Xiong,&nbsp;Xin Kang,&nbsp;Kun-Zhi Hu,&nbsp;Zhiyuan Chen,&nbsp;Dong Yan","doi":"10.1002/mop.70074","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, a single-layer differentially-Fed dual-polarized filtenna (DFDPF) with low cross-polarization is developed. The developed DFDPF consists of four shorted driven patches and four triangular parasitic patches. First, each single-feed driven patch resonates at its TM<sub>10</sub> mode (corresponding to the antiphase TM<sub>20</sub> mode of the two differentially-fed patches). Incorporating shorting pins on the driven patches leads to a lower radiation null. Then, the parasitic patches are embedded into the gap between the driven patches to introduce an extra in-band resonance operating in its TM<sub>1/2,1/2</sub> mode, along with an upper radiation null, while the footprint remains unenlarged. This improves operating bandwidth and roll-off rate on the upper passband edge. Finally, a pair of symbiotic open-ended <span>l</span>-shaped stubs are integrated into each driven patch to further enhance the suppression level of the upper stopband. The developed DFDPF was prototyped and measured for experimental verification. Experimental measurements validate the feasibility of the simulation results, demonstrating a wide –10 dB fractional impedance bandwidth of 19.5% and a peak realized gain of 6.6 dBi. In addition, the cross-polarization level is lower than –40 dB.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a single-layer differentially-Fed dual-polarized filtenna (DFDPF) with low cross-polarization is developed. The developed DFDPF consists of four shorted driven patches and four triangular parasitic patches. First, each single-feed driven patch resonates at its TM10 mode (corresponding to the antiphase TM20 mode of the two differentially-fed patches). Incorporating shorting pins on the driven patches leads to a lower radiation null. Then, the parasitic patches are embedded into the gap between the driven patches to introduce an extra in-band resonance operating in its TM1/2,1/2 mode, along with an upper radiation null, while the footprint remains unenlarged. This improves operating bandwidth and roll-off rate on the upper passband edge. Finally, a pair of symbiotic open-ended l-shaped stubs are integrated into each driven patch to further enhance the suppression level of the upper stopband. The developed DFDPF was prototyped and measured for experimental verification. Experimental measurements validate the feasibility of the simulation results, demonstrating a wide –10 dB fractional impedance bandwidth of 19.5% and a peak realized gain of 6.6 dBi. In addition, the cross-polarization level is lower than –40 dB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
期刊最新文献
Erratum to “Tightly Coupled MIMO With Internal Self-Decoupled E-Shaped Design Arms for 5G Mobile Hand-Set” Dual-Band Shared Aperture Fabry–Perot Cavity Antenna With Beam Deflection Predicting Power Density for Mm-Wave Handset Antennas Based on Machine Learning Wideband RCS Reduction of Microstrip Patch Antenna Using Quaternionic Metasurface A Liquid Metal-Based Frequency Reconfigurable Patch Antenna With Cross Placed Fluidic Channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1