Fabrizio Sordello, Emanuele Azzi, Francesco Pellegrino, Annamaria Deagostino, Polyssena Renzi
{"title":"Metal Centers Drive Selectivity of Electrocatalytic Oxygen Reduction Reaction Promoted by Tetrapyrazinoporphyrazine Complexes","authors":"Fabrizio Sordello, Emanuele Azzi, Francesco Pellegrino, Annamaria Deagostino, Polyssena Renzi","doi":"10.1002/adsu.202400373","DOIUrl":null,"url":null,"abstract":"<p>Fuel cells represent a promising technology for the future decarbonization of the mobility sector. However, the efficient use of H<sub>2</sub> and O<sub>2</sub> to produce electricity still requires noble metal catalysts such as platinum and ruthenium. In particular, the Oxygen Reduction Reaction (ORR) is complex and limiting due to its mechanism, which involves the transfer of four electrons and four protons to produce water. The search for alternative catalysts exhibiting high selectivity is progressing at a rapid pace. In this context, this group previously unveiled a homogeneous catalyst based on titanium-centered tetrapyrazinoporphyrazines (TPyzPz) for the ORR, noting a certain modularity in the selectivity toward either a two- or four-electron reduction reaction. In this study, the influence of different metal centers (magnesium (Mg), cobalt (Co), copper (Cu), and zinc (Zn)) and various substituents is investigated on the tetrapyrazinoporphyrazine ring. The findings indicate a strong dependence of activity and selectivity on these modifications. Notably, cobalt and copper catalysts exhibit a selectivity greater than 90% toward H<sub>2</sub>O production in the ORR. However, alterations to the macrocycle structure significantly affected the reactivity of these catalysts. These new insights highlighted the importance of careful structural design in the development of the next generation of ORR catalysts.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400373","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400373","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fuel cells represent a promising technology for the future decarbonization of the mobility sector. However, the efficient use of H2 and O2 to produce electricity still requires noble metal catalysts such as platinum and ruthenium. In particular, the Oxygen Reduction Reaction (ORR) is complex and limiting due to its mechanism, which involves the transfer of four electrons and four protons to produce water. The search for alternative catalysts exhibiting high selectivity is progressing at a rapid pace. In this context, this group previously unveiled a homogeneous catalyst based on titanium-centered tetrapyrazinoporphyrazines (TPyzPz) for the ORR, noting a certain modularity in the selectivity toward either a two- or four-electron reduction reaction. In this study, the influence of different metal centers (magnesium (Mg), cobalt (Co), copper (Cu), and zinc (Zn)) and various substituents is investigated on the tetrapyrazinoporphyrazine ring. The findings indicate a strong dependence of activity and selectivity on these modifications. Notably, cobalt and copper catalysts exhibit a selectivity greater than 90% toward H2O production in the ORR. However, alterations to the macrocycle structure significantly affected the reactivity of these catalysts. These new insights highlighted the importance of careful structural design in the development of the next generation of ORR catalysts.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.