Seasonal Variability of Eddy Kinetic Energy in the Greater Agulhas Current System

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY Journal of Geophysical Research-Oceans Pub Date : 2025-01-28 DOI:10.1029/2024JC021731
Mengmeng Li, Xiaomei Yan, Linlin Zhang, Yuchao Hui, Chongguang Pang, Zhiliang Liu, Dunxin Hu
{"title":"Seasonal Variability of Eddy Kinetic Energy in the Greater Agulhas Current System","authors":"Mengmeng Li,&nbsp;Xiaomei Yan,&nbsp;Linlin Zhang,&nbsp;Yuchao Hui,&nbsp;Chongguang Pang,&nbsp;Zhiliang Liu,&nbsp;Dunxin Hu","doi":"10.1029/2024JC021731","DOIUrl":null,"url":null,"abstract":"<p>Based on the novel energetic analysis tools, namely multiscale window transform and multiscale energy and vorticity analysis, this study investigates the seasonal variability of eddy kinetic energy (EKE) in the greater Agulhas Current system (GACS), which is divided into three subdomains based on the horizontal structures of background flows: the Mozambique Channel (MZC) subdomain, the northern Agulhas Current (NAC) subdomain, and the Agulhas retroflection (ARF) subdomain. Results show that the seasonality of EKE is spatially inhomogeneous. In the MZC subdomain, the EKE is strongest in spring and weakest in autumn, whereas in the NAC and ARF subdomains, the EKE level is highest in summer and lowest in winter. In all the three subdomains, the seasonal cycle of the barotropic instability of the mean flow corresponds well with that of the EKE. In contrast, the nonlocal transportation that mainly works on the redistribution of EKE is out of phase with the seasonality of EKE. Regarding the local wind forcing and baroclinic instability, they both have weak impacts on the EKE evolution, contributing power only about 10% of the barotropic instability. Moreover, neither of their seasonal cycles is consistent with the seasonality of EKE. Therefore, it is the barotropic instability of the mean flow that controls the seasonal variability of the EKE in the GACS.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021731","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the novel energetic analysis tools, namely multiscale window transform and multiscale energy and vorticity analysis, this study investigates the seasonal variability of eddy kinetic energy (EKE) in the greater Agulhas Current system (GACS), which is divided into three subdomains based on the horizontal structures of background flows: the Mozambique Channel (MZC) subdomain, the northern Agulhas Current (NAC) subdomain, and the Agulhas retroflection (ARF) subdomain. Results show that the seasonality of EKE is spatially inhomogeneous. In the MZC subdomain, the EKE is strongest in spring and weakest in autumn, whereas in the NAC and ARF subdomains, the EKE level is highest in summer and lowest in winter. In all the three subdomains, the seasonal cycle of the barotropic instability of the mean flow corresponds well with that of the EKE. In contrast, the nonlocal transportation that mainly works on the redistribution of EKE is out of phase with the seasonality of EKE. Regarding the local wind forcing and baroclinic instability, they both have weak impacts on the EKE evolution, contributing power only about 10% of the barotropic instability. Moreover, neither of their seasonal cycles is consistent with the seasonality of EKE. Therefore, it is the barotropic instability of the mean flow that controls the seasonal variability of the EKE in the GACS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
期刊最新文献
Physical Connectivity Between Mesophotic Areas in the Northern Gulf of Mexico Mechanisms of Tropical Sea Surface Salinity Variations at Seasonal Timescales Roles of Upwelling on the Dynamics and Freshwater Transport of a River Plume Over the Inner Shelf Can the Marked Arctic Ocean Freshwater Content Increases of the Last Two Decades Be Explained Within Observational Uncertainty? Kuroshio-Derived Anticyclonic Eddies Drive Lateral Transport and Transformation of Oceanic Dissolved Organic Matter Along the Continental Slope of South China Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1