An Asymmetric Change in Circulation and Nitrate Transports in the Bay of Bengal

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY Journal of Geophysical Research-Oceans Pub Date : 2025-01-29 DOI:10.1029/2024JC021670
J. E. Jardine, J. Holt, S. L. Wakelin, A. Katavouta, D. Partridge
{"title":"An Asymmetric Change in Circulation and Nitrate Transports in the Bay of Bengal","authors":"J. E. Jardine,&nbsp;J. Holt,&nbsp;S. L. Wakelin,&nbsp;A. Katavouta,&nbsp;D. Partridge","doi":"10.1029/2024JC021670","DOIUrl":null,"url":null,"abstract":"<p>The Bay of Bengal is a dynamic region that experiences intense freshwater runoff, extreme meteorological events, and seasonally reversing surface currents. The region is particularly susceptible to anthropogenic climate change, driven in part by large air-sea fluxes, persistent freshwater stratification, and low overturning rates. Predicting how this system is likely to change in the future is paramount for planning effective adaption and mitigation strategies. Using a relocatable, coupled physics-ecosystem regional coastal ocean model (NEMO-ERSEM), we investigate potential future changes in surface circulation and coastal nitrate pathways around the coast of the Bay of Bengal from 1980 to 2060, using a “business-as-usual” climate change scenario. We find that future surface currents are reduced in the northern Bay of Bengal(summer) and strengthened in the southern Bay of Bengal (fall). Coastal nitrate transports mirror this asymmetric change and decrease by as much as 14% in the northern Bay of Bengal, perpetuating a positive feedback loop whereby the northern Bay of Bengal becomes progressively fresher and more nutrient-rich, strengthening surface stratification and increasing the risk of toxic algal blooms and eutrophication events. Conversely, in the southern Bay of Bengal, coastal nitrate transports increase by 52% that promotes localized diatom blooms despite reduced regional river runoff. This work highlights the need for more rigorous scenario testing in the region and presents new challenges for mitigating the impact of anthropogenic climate change across South Asia.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021670","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021670","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The Bay of Bengal is a dynamic region that experiences intense freshwater runoff, extreme meteorological events, and seasonally reversing surface currents. The region is particularly susceptible to anthropogenic climate change, driven in part by large air-sea fluxes, persistent freshwater stratification, and low overturning rates. Predicting how this system is likely to change in the future is paramount for planning effective adaption and mitigation strategies. Using a relocatable, coupled physics-ecosystem regional coastal ocean model (NEMO-ERSEM), we investigate potential future changes in surface circulation and coastal nitrate pathways around the coast of the Bay of Bengal from 1980 to 2060, using a “business-as-usual” climate change scenario. We find that future surface currents are reduced in the northern Bay of Bengal(summer) and strengthened in the southern Bay of Bengal (fall). Coastal nitrate transports mirror this asymmetric change and decrease by as much as 14% in the northern Bay of Bengal, perpetuating a positive feedback loop whereby the northern Bay of Bengal becomes progressively fresher and more nutrient-rich, strengthening surface stratification and increasing the risk of toxic algal blooms and eutrophication events. Conversely, in the southern Bay of Bengal, coastal nitrate transports increase by 52% that promotes localized diatom blooms despite reduced regional river runoff. This work highlights the need for more rigorous scenario testing in the region and presents new challenges for mitigating the impact of anthropogenic climate change across South Asia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
期刊最新文献
Impact of Internal Tides on Distributions and Variability of Chlorophyll-a and Nutrients in the Indonesian Seas Effect of Pressure on the Diversity and Potential Activity of Aerobic Methanotrophs in Marine Sediments: A Case Study From the Shenhu Area, Northern South China Sea Characteristics and Mechanisms of Ocean Fronts-Induced Decomposition of Particulate Organic Matter and Its Implication for Marine Carbon Burial SWOT Cross-Track Error Characteristics Estimated From Observations Drivers of Tropical Cyclone—Induced Ocean Surface Cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1