Tingjie Chen, Yuhan Tang, Na Song, Zhaoxing Lin, Lihong Xu, Xiangfang Peng, Xin Chen, Minghui He
{"title":"Tailoring of Polypyrrole Wrapped Cotton Fiber Sponge for Simultaneous Solar Steam and Solar Thermoelectric Generation","authors":"Tingjie Chen, Yuhan Tang, Na Song, Zhaoxing Lin, Lihong Xu, Xiangfang Peng, Xin Chen, Minghui He","doi":"10.1002/adsu.202400618","DOIUrl":null,"url":null,"abstract":"<p>Solar steam generation (SSG) using floatable evaporators to absorb solar energy and generate heat at the water–air interface has attracted increasing interest in achieving water purification and desalination. Using biodegradable and porous biomass materials as evaporators to fabricate high-performance SSG devices is a promising route, but the poor efficiency and fussy and energy-intensive manufacturing process for biomass material-based evaporators will restrict their practical application. Here, an old commercial cotton quilt is used to prepare porous cotton fiber sponges (CFS) via a simple and scalable mechanical foaming strategy. After being decorated by the polypyrrole (PPy), the CFS@PPy sponge with a hierarchical porous structure shows broadband light absorption capacity, good hydrophilicity, and excellent photothermal capacity. The obtained sponge can be directly used as an evaporator floating on the seawater and shows a high steam-generation efficiency of 85.07% under 1 sun irradiation. Additionally, it can be used as a photothermal material to construct a solar thermoelectric generation (STG) device and achieve an enhanced open-circuit voltage (V<sub>out</sub>) of 0.4 V and output current (I<sub>out</sub>) of ≈59.6 mA under 5 sun irradiations. With the help of a boost converter, the power generation from the STG device can continuously charge the electric bulb and wristband.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400618","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar steam generation (SSG) using floatable evaporators to absorb solar energy and generate heat at the water–air interface has attracted increasing interest in achieving water purification and desalination. Using biodegradable and porous biomass materials as evaporators to fabricate high-performance SSG devices is a promising route, but the poor efficiency and fussy and energy-intensive manufacturing process for biomass material-based evaporators will restrict their practical application. Here, an old commercial cotton quilt is used to prepare porous cotton fiber sponges (CFS) via a simple and scalable mechanical foaming strategy. After being decorated by the polypyrrole (PPy), the CFS@PPy sponge with a hierarchical porous structure shows broadband light absorption capacity, good hydrophilicity, and excellent photothermal capacity. The obtained sponge can be directly used as an evaporator floating on the seawater and shows a high steam-generation efficiency of 85.07% under 1 sun irradiation. Additionally, it can be used as a photothermal material to construct a solar thermoelectric generation (STG) device and achieve an enhanced open-circuit voltage (Vout) of 0.4 V and output current (Iout) of ≈59.6 mA under 5 sun irradiations. With the help of a boost converter, the power generation from the STG device can continuously charge the electric bulb and wristband.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.