Seasonal and Geomagnetic Activity Dependence of Auroral E-Region Neutral Winds at Poker Flat

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-01-30 DOI:10.1029/2024JA033074
Weijia Zhan, Stephen R. Kaeppler
{"title":"Seasonal and Geomagnetic Activity Dependence of Auroral E-Region Neutral Winds at Poker Flat","authors":"Weijia Zhan,&nbsp;Stephen R. Kaeppler","doi":"10.1029/2024JA033074","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigated the seasonal and geomagnetic dependence of the auroral <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n </mrow>\n <annotation> $E$</annotation>\n </semantics></math>-region neutral winds and the tidal components between 90 and 125 km using nearly continuously sampled measurements from the Poker Flat Incoherent Scatter Radar (PFISR) from 2010 to 2019. The average winds show consistent semidiurnal oscillations between 100 and 115 km and diurnal oscillations above 115 km in all seasons with some seasonal and geomagnetic activity dependencies. In general, the semidiurnal oscillation in zonal and meridional directions is strongest in summer and weakest in winter. The diurnal oscillation is strongest in winter and weakest in spring. More details on the seasonal and geomagnetic activity dependencies are revealed in the tidal decomposition results. Tidal decomposition results show eastward mean wind below 115 km in summer, fall, and winter and westward mean wind above 115 km in all seasons. The meridional mean is northward below 115 km and southward above in all seasons. The diurnal amplitudes are small below 110 km and increase with altitude above 110 km in all seasons with larger enhancements in the meridional direction. The semidiurnal amplitudes increase with altitude below 110 km and reach a maximum at around 110 km, then decrease or keep stable (depending on the geomagnetic activity) above 110 km in both directions and all seasons. The diurnal phases shift to earlier times with the increase of geomagnetic activity but show different variations with altitudes in zonal and meridional directions. The semidiurnal phases show a downward progressing trend in both directions and in all seasons.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033074","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigated the seasonal and geomagnetic dependence of the auroral E $E$ -region neutral winds and the tidal components between 90 and 125 km using nearly continuously sampled measurements from the Poker Flat Incoherent Scatter Radar (PFISR) from 2010 to 2019. The average winds show consistent semidiurnal oscillations between 100 and 115 km and diurnal oscillations above 115 km in all seasons with some seasonal and geomagnetic activity dependencies. In general, the semidiurnal oscillation in zonal and meridional directions is strongest in summer and weakest in winter. The diurnal oscillation is strongest in winter and weakest in spring. More details on the seasonal and geomagnetic activity dependencies are revealed in the tidal decomposition results. Tidal decomposition results show eastward mean wind below 115 km in summer, fall, and winter and westward mean wind above 115 km in all seasons. The meridional mean is northward below 115 km and southward above in all seasons. The diurnal amplitudes are small below 110 km and increase with altitude above 110 km in all seasons with larger enhancements in the meridional direction. The semidiurnal amplitudes increase with altitude below 110 km and reach a maximum at around 110 km, then decrease or keep stable (depending on the geomagnetic activity) above 110 km in both directions and all seasons. The diurnal phases shift to earlier times with the increase of geomagnetic activity but show different variations with altitudes in zonal and meridional directions. The semidiurnal phases show a downward progressing trend in both directions and in all seasons.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
The Spreading of Magnetic Reconnection X-Line in Particle-In-Cell Simulations– Mechanism and the Effect of Drift-Kink Instability A 3-D FDTD Methodology for Modeling the Propagation of VLF Whistler Mode PLHR Waves Through the Ionosphere “Polar” Substorms During Slow Solar Wind Characteristics of Wave-Particle Power Transfer as a Function of Electron Pitch Angle in Nonlinear Frequency Chirping Jupiter's Auroral Ionosphere: Juno Microwave Radiometer Observations of Energetic Electron Precipitation Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1