Lamar O Mair, Emily E Evans, Lester Barnsley, Aleksandar Nacev, Pavel Y Stepanov, Sahar Jafari, Benjamin Shapiro, Cindi L Dennis, Irving N Weinberg
{"title":"Going for a Spin: Simultaneously Pulling and Spinning Microrods Speeds Transport through Collagen Matrices.","authors":"Lamar O Mair, Emily E Evans, Lester Barnsley, Aleksandar Nacev, Pavel Y Stepanov, Sahar Jafari, Benjamin Shapiro, Cindi L Dennis, Irving N Weinberg","doi":"10.1021/acsabm.4c01516","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic drug targeting requires particles to move through the complex viscoelastic environments of tissues and biological fluids. However, these environments often inhibit particle motion, making it difficult for magnetically guided particles to reach their intended targets. Magnetic microrods are easy to grow and manipulate, but experience significant hindrance to transport in complex, tortuous, tissue-like environments. Simple magnetic force translation (\"pulling\" or \"pushing\") is often insufficient or inefficient for long-range transport of microrods through such environments. Designing microrods capable of rotating while being pulled with a magnetic force may enable rods to overcome hindrances to transport. We present microrods with orthogonally magnetized segments, actuated by simultaneous magnetic force and magnetic torque. By simultaneously pulling and rotating our rods we create smooth-surfaced magnetic drilling microrods (MDMRs) capable of enhanced motion through protein-dense biopolymers. We model magnetic force and torque on MDMRs, characterize MDMR dynamics during transport, and demonstrate enhanced MDMR transport through protein-dense matrices in vitro.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic drug targeting requires particles to move through the complex viscoelastic environments of tissues and biological fluids. However, these environments often inhibit particle motion, making it difficult for magnetically guided particles to reach their intended targets. Magnetic microrods are easy to grow and manipulate, but experience significant hindrance to transport in complex, tortuous, tissue-like environments. Simple magnetic force translation ("pulling" or "pushing") is often insufficient or inefficient for long-range transport of microrods through such environments. Designing microrods capable of rotating while being pulled with a magnetic force may enable rods to overcome hindrances to transport. We present microrods with orthogonally magnetized segments, actuated by simultaneous magnetic force and magnetic torque. By simultaneously pulling and rotating our rods we create smooth-surfaced magnetic drilling microrods (MDMRs) capable of enhanced motion through protein-dense biopolymers. We model magnetic force and torque on MDMRs, characterize MDMR dynamics during transport, and demonstrate enhanced MDMR transport through protein-dense matrices in vitro.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.