Electric Fields at Solid-Liquid Interfaces: Insights from Molecular Dynamics Simulation.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Annual review of physical chemistry Pub Date : 2025-02-03 DOI:10.1146/annurev-physchem-082820-112101
Julia A Nauman, Dylan Suvlu, Adam P Willard
{"title":"Electric Fields at Solid-Liquid Interfaces: Insights from Molecular Dynamics Simulation.","authors":"Julia A Nauman, Dylan Suvlu, Adam P Willard","doi":"10.1146/annurev-physchem-082820-112101","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, we explore the electrostatic environment of the interface between a solid and dilute electrolyte solution, with an emphasis on the electric field profiles that these systems produce. We review the theoretical formalism that connects electrostatic potential profiles, electric field profiles, and charge density fields. This formalism has served as the basis for our understanding of interfacial electric fields and their influences on microscopic chemical and physical processes. Comparing various traditional models of interfacial electrostatics to the results of molecular dynamics (MD) simulation yields mutually inconsistent descriptions of the interfacial electric field profile. We present MD simulation results demonstrating that the average electric field profiles experienced by particles at the interface differ from the properties of traditional models and from the fields derived from the mean charge density of atomistic simulations. Furthermore, these experienced electric field profiles are species-dependent. Based on these results, we assert that a single unifying electrostatic potential profile-the gradient of which defines a single unifying electric field profile-cannot correctly predict the electrostatic forces that act on species at the interface.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082820-112101","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this review, we explore the electrostatic environment of the interface between a solid and dilute electrolyte solution, with an emphasis on the electric field profiles that these systems produce. We review the theoretical formalism that connects electrostatic potential profiles, electric field profiles, and charge density fields. This formalism has served as the basis for our understanding of interfacial electric fields and their influences on microscopic chemical and physical processes. Comparing various traditional models of interfacial electrostatics to the results of molecular dynamics (MD) simulation yields mutually inconsistent descriptions of the interfacial electric field profile. We present MD simulation results demonstrating that the average electric field profiles experienced by particles at the interface differ from the properties of traditional models and from the fields derived from the mean charge density of atomistic simulations. Furthermore, these experienced electric field profiles are species-dependent. Based on these results, we assert that a single unifying electrostatic potential profile-the gradient of which defines a single unifying electric field profile-cannot correctly predict the electrostatic forces that act on species at the interface.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固-液界面的电场:分子动力学模拟的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
期刊最新文献
Nonadiabatic Dynamics with the Mapping Approach to Surface Hopping (MASH). Organization and Dynamics of Chromosomes. Ultrafast Events in Electrocyclic Ring-Opening Reactions. Ushering in Ab Initio Quantum Chemistry. Variational Path Sampling of Rare Dynamical Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1