Advancing PLP Biosynthesis: Enhanced Stability and Activity of EcPdxK via LXTE-600 Immobilization.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2025-02-03 DOI:10.1002/bab.2729
Yunhui Ye, Heng Zhang, Xinyu Fan, Qilong Yao, Chenhong Lu, Junzhong Liu, Qingcai Jiao
{"title":"Advancing PLP Biosynthesis: Enhanced Stability and Activity of EcPdxK via LXTE-600 Immobilization.","authors":"Yunhui Ye, Heng Zhang, Xinyu Fan, Qilong Yao, Chenhong Lu, Junzhong Liu, Qingcai Jiao","doi":"10.1002/bab.2729","DOIUrl":null,"url":null,"abstract":"<p><p>Pyridoxal 5'-phosphate (PLP) plays an essential role in a multitude of cellular processes due to its function as a critical coenzyme. This study introduces a significant advancement in PLP biosynthesis by enhancing the stability and activity of Escherichia coli-derived pyridoxal kinase (EcPdxK) through immobilization on an innovative epoxy resin, LXTE-600. Our approach involved the systematic optimization of enzyme loading, coupling duration, and temperature, which resulted in improved immobilization efficiency and a high loading capacity of 80 mg/g. The characterization of immobilized EcPdxK@LXTE-600 was conducted using Fourier transform infrared spectroscopy (FTIR) and confocal laser scanning microscopy (CLSM), confirming successful immobilization. This process notably enhanced the enzyme's performance, increasing its tolerance to pH and temperature fluctuations, thereby improving its thermal stability. The immobilized EcPdxK@LXTE-600 retained over 80% of its initial activity after 4 weeks of storage at 4°C and could be reused up to eight cycles while maintaining more than 70% of its initial activity. These findings not only demonstrate the efficacy of the LXTE-600-based immobilization method but also suggest promising industrial applications for the sustainable production of PLP, potentially revolutionizing approaches in biotechnological and pharmaceutical sectors.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2729","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyridoxal 5'-phosphate (PLP) plays an essential role in a multitude of cellular processes due to its function as a critical coenzyme. This study introduces a significant advancement in PLP biosynthesis by enhancing the stability and activity of Escherichia coli-derived pyridoxal kinase (EcPdxK) through immobilization on an innovative epoxy resin, LXTE-600. Our approach involved the systematic optimization of enzyme loading, coupling duration, and temperature, which resulted in improved immobilization efficiency and a high loading capacity of 80 mg/g. The characterization of immobilized EcPdxK@LXTE-600 was conducted using Fourier transform infrared spectroscopy (FTIR) and confocal laser scanning microscopy (CLSM), confirming successful immobilization. This process notably enhanced the enzyme's performance, increasing its tolerance to pH and temperature fluctuations, thereby improving its thermal stability. The immobilized EcPdxK@LXTE-600 retained over 80% of its initial activity after 4 weeks of storage at 4°C and could be reused up to eight cycles while maintaining more than 70% of its initial activity. These findings not only demonstrate the efficacy of the LXTE-600-based immobilization method but also suggest promising industrial applications for the sustainable production of PLP, potentially revolutionizing approaches in biotechnological and pharmaceutical sectors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Advancing PLP Biosynthesis: Enhanced Stability and Activity of EcPdxK via LXTE-600 Immobilization. Comparative Analysis of SCM Muscle Fatigue in Office Workers with Hunched Posture: A Study on Chronic Lower Back Pain versus Non-Affected Individuals. Evaluating Anti-Diabetic Effect of Courmarin Derivative Aesculetin in Rats with Diet-Induced Obesity. Prognostic and Diagnostic Value of Platelet Distribution Width in COPD Patients with Pulmonary Hypertension: A Retrospective Study. Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1