Erin L Fee, Haruo Usuda, Sean W D Carter, Hideyuki Ikeda, Tsukasa Takahashi, Yuki Takahashi, Yusaku Kumagai, Michael W Clarke, Demelza J Ireland, John P Newnham, Masatoshi Saito, Sebastian E Illanes, Binny Priya Sesurajan, Liang Shen, Mahesh A Choolani, Gokce Oguz, Adaikalavan Ramasamy, Sara Ritchie, Andrew Ritchie, Alan H Jobe, Matthew W Kemp
{"title":"Single-nucleotide polymorphisms in dizygotic twin ovine fetuses are associated with discordant responses to antenatal steroid therapy.","authors":"Erin L Fee, Haruo Usuda, Sean W D Carter, Hideyuki Ikeda, Tsukasa Takahashi, Yuki Takahashi, Yusaku Kumagai, Michael W Clarke, Demelza J Ireland, John P Newnham, Masatoshi Saito, Sebastian E Illanes, Binny Priya Sesurajan, Liang Shen, Mahesh A Choolani, Gokce Oguz, Adaikalavan Ramasamy, Sara Ritchie, Andrew Ritchie, Alan H Jobe, Matthew W Kemp","doi":"10.1186/s12916-025-03910-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antenatal steroid (ANS) therapy is given to women at risk of preterm delivery to accelerate fetal lung maturation. However, the benefit of ANS therapy is variable and how maternal and fetal factors contribute to this observed variability is unknown. We aimed to test the degree of concordance in preterm lung function, and correlate this with genomic, transcriptomic, and pharmacokinetic variables in preterm dizygotic twin ovine fetuses.</p><p><strong>Methods: </strong>Thirty-one date-mated ewes carrying twin fetuses at 123 ± 1 days' gestation received maternal intramuscular injections of either (i) 1 × 0.25 mg/kg betamethasone phosphate and acetate (CS1, n = 11 twin pairs) or (ii) 2 × 0.25 mg/kg betamethasone phosphate and acetate, 24 h apart (CS2, n = 10 twin pairs) or (iii) 2 × saline, 24 h apart (negative control, n = 10 twin pairs). Fetuses were surgically delivered 24 h after their final treatment and ventilated for 30 min.</p><p><strong>Results: </strong>ANS-exposed female fetuses had lower arterial partial pressure of carbon dioxide (PaCO<sub>2</sub>) values than male fetuses (76.5 ± 38.0 vs. 97.2 ± 42.5 mmHg), although the observed difference was not statistically significant (p = 0.1). Only 52% of ANS-treated twins were concordant for lung maturation responses. There was no difference in fetal lung tissue or plasma steroid concentrations within or between twin pairs. Genomic analysis identified 13 single-nucleotide polymorphisms (SNPs) statistically associated with ANS-responsiveness, including in the proto-oncogene MET and the transcription activator STAT1.</p><p><strong>Conclusions: </strong>Twin fetal responses and ANS tissue levels were comparable with those from singleton fetuses in earlier studies. Twin ovine fetuses thus benefit from ANS in a similar manner to singleton fetuses, and a larger dose of betamethasone is not required. Assuming no difference in input from the placental or maternal compartments, fetal lung responses to ANS therapy in dizygotic twin preterm lambs are dependent on the fetus itself. These data suggest a potential heritable role in determining ANS responsiveness.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"65"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03910-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Antenatal steroid (ANS) therapy is given to women at risk of preterm delivery to accelerate fetal lung maturation. However, the benefit of ANS therapy is variable and how maternal and fetal factors contribute to this observed variability is unknown. We aimed to test the degree of concordance in preterm lung function, and correlate this with genomic, transcriptomic, and pharmacokinetic variables in preterm dizygotic twin ovine fetuses.
Methods: Thirty-one date-mated ewes carrying twin fetuses at 123 ± 1 days' gestation received maternal intramuscular injections of either (i) 1 × 0.25 mg/kg betamethasone phosphate and acetate (CS1, n = 11 twin pairs) or (ii) 2 × 0.25 mg/kg betamethasone phosphate and acetate, 24 h apart (CS2, n = 10 twin pairs) or (iii) 2 × saline, 24 h apart (negative control, n = 10 twin pairs). Fetuses were surgically delivered 24 h after their final treatment and ventilated for 30 min.
Results: ANS-exposed female fetuses had lower arterial partial pressure of carbon dioxide (PaCO2) values than male fetuses (76.5 ± 38.0 vs. 97.2 ± 42.5 mmHg), although the observed difference was not statistically significant (p = 0.1). Only 52% of ANS-treated twins were concordant for lung maturation responses. There was no difference in fetal lung tissue or plasma steroid concentrations within or between twin pairs. Genomic analysis identified 13 single-nucleotide polymorphisms (SNPs) statistically associated with ANS-responsiveness, including in the proto-oncogene MET and the transcription activator STAT1.
Conclusions: Twin fetal responses and ANS tissue levels were comparable with those from singleton fetuses in earlier studies. Twin ovine fetuses thus benefit from ANS in a similar manner to singleton fetuses, and a larger dose of betamethasone is not required. Assuming no difference in input from the placental or maternal compartments, fetal lung responses to ANS therapy in dizygotic twin preterm lambs are dependent on the fetus itself. These data suggest a potential heritable role in determining ANS responsiveness.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.