Evaluating Anti-Diabetic Effect of Courmarin Derivative Aesculetin in Rats with Diet-Induced Obesity.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2025-02-03 DOI:10.1002/bab.2712
Bian Wu, Junyu Wang, Guishun Sun, Kunlin Li, Qiyun Chen, Yibo Wang, Xuan He, Shiwen Li, Wei Yang
{"title":"Evaluating Anti-Diabetic Effect of Courmarin Derivative Aesculetin in Rats with Diet-Induced Obesity.","authors":"Bian Wu, Junyu Wang, Guishun Sun, Kunlin Li, Qiyun Chen, Yibo Wang, Xuan He, Shiwen Li, Wei Yang","doi":"10.1002/bab.2712","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity, modifiable and an avertable medical condition, has become a global threat due to rapid modernization and industrialization. Swift growth in modernization not only eases the day-to-day life, it also mandates sedentary lifestyle, which leads to various noncommunicable diseases. At present one in eight people in global population are obese, and these booming obese individuals are prone to various other micro- and macrovascular diseases such hyperglycemia, myocardial infraction, hypertension, stroke, and so forth. Ample research had unveiled an intricate association perceived between obesity and Type 2 diabetes mellitus pathogenesis. Although the intake of anti-obesity drugs along with anti-diabetic drugs had effectively regulated the hyperglycemic conditions in diabetic patients, it causes various side effects on long-term usage. Coumarins are phytochemicals that have demonstrated pharmacological properties including anti-inflammatory, antioxidant, anti-tumor, and so forth. In this analysis, we assessed anti-obesity and anti-diabetic potency of aesculetin, a courmarin derivative. The rats were induced obesity with high-fat diet and subjected to streptozotocin infusion to induce hyperglycemia. Obese diabetic induced rats were treated with aesculetin and assessed for its anti-diabetic effect. BMI were assessed in the rats to analyze the anti-obesity effect of aesculetin. Diabetic profile test and lipid profile test were performed to evaluate the anti-diabetic effect of aesculetin. Ameliorative effect of aesculetin in obese rats during hyperglycemic conditions was assessed with renal profile test, hepatic function biomarkers, and by histopathological analysis of cardiac tissue. The anti-inflammatory and antioxidant property were also assessed to determine the mechanism of action of aesculetin. To confirm the anti-obesity potency of aesculetin, adipokines levels were estimated. Aesculetin eminently decreased the BMI, HbA1c, cholesterol levels, and intensified secretion of insulin in obese diabetic rats. It also regulated the renal, hepatic functional markers and prevented cardiac tissue injury in obese diabetic rats. It regulated the adipokines, increased antioxidants, and decreased level of proinflammatory cytokines, thereby prevented obesity-induced hyperglycemic effects in rats. To conclude, our findings had confirmed the supplementary intake of aesculetin prevents obesity-induced hyperglycemic disorder in rats.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2712","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity, modifiable and an avertable medical condition, has become a global threat due to rapid modernization and industrialization. Swift growth in modernization not only eases the day-to-day life, it also mandates sedentary lifestyle, which leads to various noncommunicable diseases. At present one in eight people in global population are obese, and these booming obese individuals are prone to various other micro- and macrovascular diseases such hyperglycemia, myocardial infraction, hypertension, stroke, and so forth. Ample research had unveiled an intricate association perceived between obesity and Type 2 diabetes mellitus pathogenesis. Although the intake of anti-obesity drugs along with anti-diabetic drugs had effectively regulated the hyperglycemic conditions in diabetic patients, it causes various side effects on long-term usage. Coumarins are phytochemicals that have demonstrated pharmacological properties including anti-inflammatory, antioxidant, anti-tumor, and so forth. In this analysis, we assessed anti-obesity and anti-diabetic potency of aesculetin, a courmarin derivative. The rats were induced obesity with high-fat diet and subjected to streptozotocin infusion to induce hyperglycemia. Obese diabetic induced rats were treated with aesculetin and assessed for its anti-diabetic effect. BMI were assessed in the rats to analyze the anti-obesity effect of aesculetin. Diabetic profile test and lipid profile test were performed to evaluate the anti-diabetic effect of aesculetin. Ameliorative effect of aesculetin in obese rats during hyperglycemic conditions was assessed with renal profile test, hepatic function biomarkers, and by histopathological analysis of cardiac tissue. The anti-inflammatory and antioxidant property were also assessed to determine the mechanism of action of aesculetin. To confirm the anti-obesity potency of aesculetin, adipokines levels were estimated. Aesculetin eminently decreased the BMI, HbA1c, cholesterol levels, and intensified secretion of insulin in obese diabetic rats. It also regulated the renal, hepatic functional markers and prevented cardiac tissue injury in obese diabetic rats. It regulated the adipokines, increased antioxidants, and decreased level of proinflammatory cytokines, thereby prevented obesity-induced hyperglycemic effects in rats. To conclude, our findings had confirmed the supplementary intake of aesculetin prevents obesity-induced hyperglycemic disorder in rats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Advancing PLP Biosynthesis: Enhanced Stability and Activity of EcPdxK via LXTE-600 Immobilization. Comparative Analysis of SCM Muscle Fatigue in Office Workers with Hunched Posture: A Study on Chronic Lower Back Pain versus Non-Affected Individuals. Evaluating Anti-Diabetic Effect of Courmarin Derivative Aesculetin in Rats with Diet-Induced Obesity. Prognostic and Diagnostic Value of Platelet Distribution Width in COPD Patients with Pulmonary Hypertension: A Retrospective Study. Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1