Michael C Zaiken, Sujeong Jin, Cameron McDonald-Hyman, Christina Hartigan, Peter Sage, Keli L Hippen, Brent H Koehn, Angela Panoskaltsis-Mortari, Megan J Riddle, Cindy Eide, Jakub Tolar, Geoffrey R Hill, Leo Luznik, Corey S Cutler, Jerome Ritz, Leslie S Kean, Ageliki Tsagaratou, Anjana Rao, Bruce R Blazar
{"title":"Deficiency of T follicular helper cell Tet3 DNA demethylation inhibits pathogenic IgG2c class switching and chronic GVHD.","authors":"Michael C Zaiken, Sujeong Jin, Cameron McDonald-Hyman, Christina Hartigan, Peter Sage, Keli L Hippen, Brent H Koehn, Angela Panoskaltsis-Mortari, Megan J Riddle, Cindy Eide, Jakub Tolar, Geoffrey R Hill, Leo Luznik, Corey S Cutler, Jerome Ritz, Leslie S Kean, Ageliki Tsagaratou, Anjana Rao, Bruce R Blazar","doi":"10.1182/blood.2024025036","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic graft-versus-host disease (cGVHD) is the leading cause of morbidity and non-relapse associated mortality following allogeneic hematopoietic cell transplantation (aHSCT). Treating steroid resistant/refractory cGVHD remains challenging. Epigenetic regulators can have global transcriptional effects that control donor T-cell responses. We previously showed that inhibiting histone lysine motifs by chromatin-modifying enzymes can ameliorate murine cGVHD. Targeting donor T-cell DNA methyltransferases reduce acute GVHD. Here, we sought to investigate the DNA demethylase Tet (ten-eleven translocase) methylcytosine dioxygenases 2 (Tet2) and Tet3 in T follicular helper cell (TFH) dependent cGVHD. In a clinically relevant model of cGVHD that recapitulates pulmonary fibrosis from bronchiolitis obliterans, recipients of Tet2 deleted donor T-cells did not have improved pulmonary function tests in contrast to the markedly improved pulmonary function in Tet3 deleted donor T-cells. Tet3 deleted donor T-cells did not impair TFH-dependent germinal center (GC) formation. Unexpectedly, TET3 deficiency resulted in elevated GATA3 expression in and IL-4 production by TFH cells. TET3 deficient TFH cells supported GC B-cell immunoglobulin (Ig) class switching to nonpathogenic IgG1 but not pathogenic IgG2c allowing mice to escape cGVHD pulmonary fibrosis. Elevated GATA3 expression and disruption of IgG2c class switching was recapitulated in an in-vitro human GC culture system. These studies provide new insights into the function of Tet3 in TFH driven Ig class switching and suggest a new approach to mitigate cGVHD.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024025036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic graft-versus-host disease (cGVHD) is the leading cause of morbidity and non-relapse associated mortality following allogeneic hematopoietic cell transplantation (aHSCT). Treating steroid resistant/refractory cGVHD remains challenging. Epigenetic regulators can have global transcriptional effects that control donor T-cell responses. We previously showed that inhibiting histone lysine motifs by chromatin-modifying enzymes can ameliorate murine cGVHD. Targeting donor T-cell DNA methyltransferases reduce acute GVHD. Here, we sought to investigate the DNA demethylase Tet (ten-eleven translocase) methylcytosine dioxygenases 2 (Tet2) and Tet3 in T follicular helper cell (TFH) dependent cGVHD. In a clinically relevant model of cGVHD that recapitulates pulmonary fibrosis from bronchiolitis obliterans, recipients of Tet2 deleted donor T-cells did not have improved pulmonary function tests in contrast to the markedly improved pulmonary function in Tet3 deleted donor T-cells. Tet3 deleted donor T-cells did not impair TFH-dependent germinal center (GC) formation. Unexpectedly, TET3 deficiency resulted in elevated GATA3 expression in and IL-4 production by TFH cells. TET3 deficient TFH cells supported GC B-cell immunoglobulin (Ig) class switching to nonpathogenic IgG1 but not pathogenic IgG2c allowing mice to escape cGVHD pulmonary fibrosis. Elevated GATA3 expression and disruption of IgG2c class switching was recapitulated in an in-vitro human GC culture system. These studies provide new insights into the function of Tet3 in TFH driven Ig class switching and suggest a new approach to mitigate cGVHD.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.