Wassim Daher, Vincent Le Moigne, Yara Tasrini, Shweta Parmar, Danielle L Sexton, John Jairo Aguilera-Correa, Valentin Berdal, Elitza I Tocheva, Jean-Louis Herrmann, Laurent Kremer
{"title":"Deletion of ESX-3 and ESX-4 secretion systems in Mycobacterium abscessus results in highly impaired pathogenicity.","authors":"Wassim Daher, Vincent Le Moigne, Yara Tasrini, Shweta Parmar, Danielle L Sexton, John Jairo Aguilera-Correa, Valentin Berdal, Elitza I Tocheva, Jean-Louis Herrmann, Laurent Kremer","doi":"10.1038/s42003-025-07572-4","DOIUrl":null,"url":null,"abstract":"<p><p>Type VII secretion systems participate in protein export, virulence, conjugation, and metabolic regulation. Five subtypes (ESX-1 to ESX-5) exist, each with specific roles and well-characterized secretion profiles in various mycobacterial species. Mycobacterium abscessus, encodes only ESX-3 and ESX-4. Here, single and double M. abscessus mutants lacking the main ATPases EccC3 and EccC4 were used to define ESX-3 and ESX-4 contributions to substrate secretion and virulence. Our results demonstrate that EsxG/H secretion depends entirely on ESX-3, whereas both ESX-3 and ESX-4 secrete EsxU/T. Furthermore, two newly identified PE/PPE substrates (MAB_0046/MAB_0047) require ESX-3 for secretion. Functional complementation restored secretion and revealed subpolar localization of these systems. Macrophage infections showed that ESX-3 and ESX-4 contribute to bacterial internalization, phagosomal escape, and intracellular survival. In mice, infections with eccC3- and/or eccC4-deletion mutants resulted in complete survival and reduced bacterial loads in the lungs. These findings demonstrate that both ESX systems drive M. abscessus pathogenicity.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"166"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07572-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type VII secretion systems participate in protein export, virulence, conjugation, and metabolic regulation. Five subtypes (ESX-1 to ESX-5) exist, each with specific roles and well-characterized secretion profiles in various mycobacterial species. Mycobacterium abscessus, encodes only ESX-3 and ESX-4. Here, single and double M. abscessus mutants lacking the main ATPases EccC3 and EccC4 were used to define ESX-3 and ESX-4 contributions to substrate secretion and virulence. Our results demonstrate that EsxG/H secretion depends entirely on ESX-3, whereas both ESX-3 and ESX-4 secrete EsxU/T. Furthermore, two newly identified PE/PPE substrates (MAB_0046/MAB_0047) require ESX-3 for secretion. Functional complementation restored secretion and revealed subpolar localization of these systems. Macrophage infections showed that ESX-3 and ESX-4 contribute to bacterial internalization, phagosomal escape, and intracellular survival. In mice, infections with eccC3- and/or eccC4-deletion mutants resulted in complete survival and reduced bacterial loads in the lungs. These findings demonstrate that both ESX systems drive M. abscessus pathogenicity.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.