Accelerating biopharmaceutical cell line selection with label-free multimodal nonlinear optical microscopy and machine learning.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-02-03 DOI:10.1038/s42003-025-07596-w
Jindou Shi, Alexander Ho, Corey E Snyder, Eric J Chaney, Janet E Sorrells, Aneesh Alex, Remben Talaban, Darold R Spillman, Marina Marjanovic, Minh Doan, Gary Finka, Steve R Hood, Stephen A Boppart
{"title":"Accelerating biopharmaceutical cell line selection with label-free multimodal nonlinear optical microscopy and machine learning.","authors":"Jindou Shi, Alexander Ho, Corey E Snyder, Eric J Chaney, Janet E Sorrells, Aneesh Alex, Remben Talaban, Darold R Spillman, Marina Marjanovic, Minh Doan, Gary Finka, Steve R Hood, Stephen A Boppart","doi":"10.1038/s42003-025-07596-w","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of high-performing cell lines is crucial for biopharmaceutical production but is often time-consuming and labor-intensive. We investigated label-free multimodal nonlinear optical microscopy for non-perturbative profiling of biopharmaceutical cell lines based on their intrinsic molecular contrast. Employing simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy with fluorescence lifetime imaging microscopy (FLIM), we characterized Chinese hamster ovary (CHO) cell lines at early passages (0-2). A machine learning (ML)-assisted analysis pipeline leveraged high-dimensional information to classify single cells into their respective lines. Remarkably, the monoclonal cell line classifiers achieved balanced accuracies exceeding 96.8% as early as passage 2. Correlation features and FLIM modality played pivotal roles in early classification. This integrated optical bioimaging and machine learning approach presents a promising solution to expedite cell line selection process while ensuring identification of high-performing biopharmaceutical cell lines. The techniques have potential for broader single-cell characterization applications in stem cell research, immunology, cancer biology and beyond.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"157"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07596-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The selection of high-performing cell lines is crucial for biopharmaceutical production but is often time-consuming and labor-intensive. We investigated label-free multimodal nonlinear optical microscopy for non-perturbative profiling of biopharmaceutical cell lines based on their intrinsic molecular contrast. Employing simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy with fluorescence lifetime imaging microscopy (FLIM), we characterized Chinese hamster ovary (CHO) cell lines at early passages (0-2). A machine learning (ML)-assisted analysis pipeline leveraged high-dimensional information to classify single cells into their respective lines. Remarkably, the monoclonal cell line classifiers achieved balanced accuracies exceeding 96.8% as early as passage 2. Correlation features and FLIM modality played pivotal roles in early classification. This integrated optical bioimaging and machine learning approach presents a promising solution to expedite cell line selection process while ensuring identification of high-performing biopharmaceutical cell lines. The techniques have potential for broader single-cell characterization applications in stem cell research, immunology, cancer biology and beyond.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Ecological change and conflict reduction led to a social circulatory system in ants. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. High hydrostatic pressure stimulates n-C16 mineralization to CO2 by deep-ocean bacterium Alcanivorax xenomutans A28. RNA-protein interaction prediction using network-guided deep learning. The transcriptomic landscape of monosomy X (45,X) during early human fetal and placental development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1