From chimeras to extensive chaos in networks of heterogeneous Kuramoto oscillator populations.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED Chaos Pub Date : 2025-02-01 DOI:10.1063/5.0243379
Pol Floriach, Jordi Garcia-Ojalvo, Pau Clusella
{"title":"From chimeras to extensive chaos in networks of heterogeneous Kuramoto oscillator populations.","authors":"Pol Floriach, Jordi Garcia-Ojalvo, Pau Clusella","doi":"10.1063/5.0243379","DOIUrl":null,"url":null,"abstract":"<p><p>Populations of coupled oscillators can exhibit a wide range of complex dynamical behavior, from complete synchronization to chimera and chaotic states. We can, thus, expect complex dynamics to arise in networks of such populations. Here, we analyze the dynamics of networks of populations of heterogeneous mean-field coupled Kuramoto-Sakaguchi oscillators and show that the instability that leads to chimera states in a simple two-population model also leads to extensive chaos in large networks of coupled populations. Formally, the system consists of a complex network of oscillator populations whose mesoscopic behavior evolves according to the Ott-Antonsen equations. By considering identical parameters across populations, the system contains a manifold of homogeneous solutions where all populations behave identically. Stability analysis of these homogeneous states provided by the master stability function formalism shows that non-trivial dynamics might emerge on a wide region of the parameter space for arbitrary network topologies. As examples, we first revisit the two-population case and provide a complete bifurcation diagram. Then, we investigate the emergent dynamics in large ring and Erdös-Rényi networks. In both cases, transverse instabilities lead to extensive space-time chaos, i.e., irregular regimes whose complexity scales linearly with the system size. Our work provides a unified analytical framework to understand the emergent dynamics of networks of oscillator populations, from chimera states to robust high-dimensional chaos.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0243379","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Populations of coupled oscillators can exhibit a wide range of complex dynamical behavior, from complete synchronization to chimera and chaotic states. We can, thus, expect complex dynamics to arise in networks of such populations. Here, we analyze the dynamics of networks of populations of heterogeneous mean-field coupled Kuramoto-Sakaguchi oscillators and show that the instability that leads to chimera states in a simple two-population model also leads to extensive chaos in large networks of coupled populations. Formally, the system consists of a complex network of oscillator populations whose mesoscopic behavior evolves according to the Ott-Antonsen equations. By considering identical parameters across populations, the system contains a manifold of homogeneous solutions where all populations behave identically. Stability analysis of these homogeneous states provided by the master stability function formalism shows that non-trivial dynamics might emerge on a wide region of the parameter space for arbitrary network topologies. As examples, we first revisit the two-population case and provide a complete bifurcation diagram. Then, we investigate the emergent dynamics in large ring and Erdös-Rényi networks. In both cases, transverse instabilities lead to extensive space-time chaos, i.e., irregular regimes whose complexity scales linearly with the system size. Our work provides a unified analytical framework to understand the emergent dynamics of networks of oscillator populations, from chimera states to robust high-dimensional chaos.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
期刊最新文献
A logarithm law for non-autonomous systems rapidly converging to equilibrium and mean field coupled systems. Diffusive transport through a double-cone channel under stochastic resetting. Directed transport of particles in coupled fractional-order systems excited by Lévy noise. Dissipative fractional standard maps: Riemann-Liouville and Caputo. Evolutionary dynamics of cooperation driven by a mixed update rule in structured prisoner's dilemma games.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1