Periodic solutions and chaotic attractors of a modified epidemiological SEIS model.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED Chaos Pub Date : 2025-02-01 DOI:10.1063/5.0241314
Michael Bestehorn, Thomas M Michelitsch
{"title":"Periodic solutions and chaotic attractors of a modified epidemiological SEIS model.","authors":"Michael Bestehorn, Thomas M Michelitsch","doi":"10.1063/5.0241314","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a generalized SEIS (susceptible, exposed, infectious, and susceptible) model where individuals are divided into three compartments: S (healthy and susceptible), E (infected but not just infectious, or exposed), and I (infectious). Finite waiting times in the compartments yield a system of delay-differential or memory equations and may exhibit oscillatory (Hopf) instabilities of the otherwise stationary endemic state, leading normally to regular oscillations in the form of an attractive limit cycle in the phase space spanned by the compartment rates. In the present paper, our aim is to demonstrate that in the dynamics of delayed SEIS models, persistent chaotic attractors can bifurcate from these limit cycles and become accessible if the nonlinear interaction terms fulfill certain basic requirements, which to our knowledge were not addressed in the literature so far. Computing the largest Lyapunov exponent, we show that chaotic behavior exists in a wide parameter range. Finally, we discuss a more general system and show that a sudden falloff of the infection rate with respect to increasing infection number may be responsible for the emergence of chaotic time evolution. Such a falloff can describe mitigation measures, such as wearing masques, individual isolation, or vaccination. The model may have a wide range of interdisciplinary applications beyond epidemic spreading, for instance, in the kinetics of certain chemical reactions.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0241314","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a generalized SEIS (susceptible, exposed, infectious, and susceptible) model where individuals are divided into three compartments: S (healthy and susceptible), E (infected but not just infectious, or exposed), and I (infectious). Finite waiting times in the compartments yield a system of delay-differential or memory equations and may exhibit oscillatory (Hopf) instabilities of the otherwise stationary endemic state, leading normally to regular oscillations in the form of an attractive limit cycle in the phase space spanned by the compartment rates. In the present paper, our aim is to demonstrate that in the dynamics of delayed SEIS models, persistent chaotic attractors can bifurcate from these limit cycles and become accessible if the nonlinear interaction terms fulfill certain basic requirements, which to our knowledge were not addressed in the literature so far. Computing the largest Lyapunov exponent, we show that chaotic behavior exists in a wide parameter range. Finally, we discuss a more general system and show that a sudden falloff of the infection rate with respect to increasing infection number may be responsible for the emergence of chaotic time evolution. Such a falloff can describe mitigation measures, such as wearing masques, individual isolation, or vaccination. The model may have a wide range of interdisciplinary applications beyond epidemic spreading, for instance, in the kinetics of certain chemical reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
期刊最新文献
A logarithm law for non-autonomous systems rapidly converging to equilibrium and mean field coupled systems. Diffusive transport through a double-cone channel under stochastic resetting. Directed transport of particles in coupled fractional-order systems excited by Lévy noise. Dissipative fractional standard maps: Riemann-Liouville and Caputo. Evolutionary dynamics of cooperation driven by a mixed update rule in structured prisoner's dilemma games.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1