Mostafa Honari-Latifpour, Jiajie Ding, Igor Belykh, Mohammad-Ali Miri
{"title":"Spectral principle for frequency synchronization in repulsive laser networks and beyond.","authors":"Mostafa Honari-Latifpour, Jiajie Ding, Igor Belykh, Mohammad-Ali Miri","doi":"10.1063/5.0251322","DOIUrl":null,"url":null,"abstract":"<p><p>Network synchronization of lasers is critical for achieving high-power outputs and enabling effective optical computing. However, the role of network topology in frequency synchronization of optical oscillators and lasers remains not well understood. Here, we report our significant progress toward solving this critical problem for networks of heterogeneous laser model oscillators with repulsive coupling. We discover a general approximate principle for predicting the onset of frequency synchronization from the spectral knowledge of a complex matrix representing a combination of the signless Laplacian induced by repulsive coupling and a matrix associated with intrinsic frequency detuning. We show that the gap between the two smallest eigenvalues of the complex matrix generally controls the coupling threshold for frequency synchronization. In stark contrast with attractive networks, we demonstrate that local rings and all-to-all networks prevent frequency synchronization, whereas full bipartite networks have optimal synchronization properties. Beyond laser models, we show that, with a few exceptions, the spectral principle can be applied to repulsive Kuramoto networks. Our results provide guidelines for optimal designs of scalable optical oscillator networks capable of achieving reliable frequency synchronization.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0251322","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Network synchronization of lasers is critical for achieving high-power outputs and enabling effective optical computing. However, the role of network topology in frequency synchronization of optical oscillators and lasers remains not well understood. Here, we report our significant progress toward solving this critical problem for networks of heterogeneous laser model oscillators with repulsive coupling. We discover a general approximate principle for predicting the onset of frequency synchronization from the spectral knowledge of a complex matrix representing a combination of the signless Laplacian induced by repulsive coupling and a matrix associated with intrinsic frequency detuning. We show that the gap between the two smallest eigenvalues of the complex matrix generally controls the coupling threshold for frequency synchronization. In stark contrast with attractive networks, we demonstrate that local rings and all-to-all networks prevent frequency synchronization, whereas full bipartite networks have optimal synchronization properties. Beyond laser models, we show that, with a few exceptions, the spectral principle can be applied to repulsive Kuramoto networks. Our results provide guidelines for optimal designs of scalable optical oscillator networks capable of achieving reliable frequency synchronization.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.