Sven Mattern, Vanessa Hollfoth, Eyyub Bag, Arslan Ali, Philip Riemenschneider, Mohamed A Jarboui, Karsten Boldt, Mihaly Sulyok, Anabel Dickemann, Julia Luibrand, Stefano Fusco, Mirita Franz-Wachtel, Kerstin Singer, Benjamin Goeppert, Oliver Schilling, Nisar Malek, Falko Fend, Boris Macek, Marius Ueffing, Stephan Singer
{"title":"An AI-assisted morphoproteomic approach is a supportive tool in esophagitis-related precision medicine.","authors":"Sven Mattern, Vanessa Hollfoth, Eyyub Bag, Arslan Ali, Philip Riemenschneider, Mohamed A Jarboui, Karsten Boldt, Mihaly Sulyok, Anabel Dickemann, Julia Luibrand, Stefano Fusco, Mirita Franz-Wachtel, Kerstin Singer, Benjamin Goeppert, Oliver Schilling, Nisar Malek, Falko Fend, Boris Macek, Marius Ueffing, Stephan Singer","doi":"10.1038/s44321-025-00194-7","DOIUrl":null,"url":null,"abstract":"<p><p>Esophagitis is a frequent, but at the molecular level poorly characterized condition with diverse underlying etiologies and treatments. Correct diagnosis can be challenging due to partially overlapping histological features. By proteomic profiling of routine diagnostic FFPE biopsy specimens (n = 55) representing controls, Reflux- (GERD), Eosinophilic-(EoE), Crohn's-(CD), Herpes simplex (HSV) and Candida (CA)-esophagitis by LC-MS/MS (DIA), we identified distinct signatures and functional networks (e.g. mitochondrial translation (EoE), immunoproteasome, complement and coagulations system (CD), ribosomal biogenesis (GERD)), and pathogen-specific proteins for HSV and CA. Moreover, combining these signatures with histological parameters in a machine learning model achieved high diagnostic accuracy (100% training set, 93.8% test set), and supported diagnostic decisions in borderline/challenging cases. Applied to a young patient representing a use case, the external GERD diagnosis could be revised to CD and ICAM1 was identified as highly abundant therapeutic target. This resulted in CyclosporinA as a personalized treatment recommendation by the local multidisciplinary molecular inflammation board. Our integrated AI-assisted morphoproteomic approach allows deeper insights in disease-specific molecular alterations and represents a promising tool in esophagitis-related precision medicine.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00194-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Esophagitis is a frequent, but at the molecular level poorly characterized condition with diverse underlying etiologies and treatments. Correct diagnosis can be challenging due to partially overlapping histological features. By proteomic profiling of routine diagnostic FFPE biopsy specimens (n = 55) representing controls, Reflux- (GERD), Eosinophilic-(EoE), Crohn's-(CD), Herpes simplex (HSV) and Candida (CA)-esophagitis by LC-MS/MS (DIA), we identified distinct signatures and functional networks (e.g. mitochondrial translation (EoE), immunoproteasome, complement and coagulations system (CD), ribosomal biogenesis (GERD)), and pathogen-specific proteins for HSV and CA. Moreover, combining these signatures with histological parameters in a machine learning model achieved high diagnostic accuracy (100% training set, 93.8% test set), and supported diagnostic decisions in borderline/challenging cases. Applied to a young patient representing a use case, the external GERD diagnosis could be revised to CD and ICAM1 was identified as highly abundant therapeutic target. This resulted in CyclosporinA as a personalized treatment recommendation by the local multidisciplinary molecular inflammation board. Our integrated AI-assisted morphoproteomic approach allows deeper insights in disease-specific molecular alterations and represents a promising tool in esophagitis-related precision medicine.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)