Ginger-Derived Exosome-Like Nanoparticles Loaded With Indocyanine Green Enhances Phototherapy Efficacy for Breast Cancer.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY International Journal of Nanomedicine Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S478435
Zhaoming Guo, Guqing Li, Lanjun Shen, Jiawei Pan, Danni Dou, Yuwei Gong, Wanwan Shi, Yuhua Sun, Yi Zhang, Kun Ma, Changhao Cui, Wenxin Li, Qiang Liu, Xudong Zhu
{"title":"Ginger-Derived Exosome-Like Nanoparticles Loaded With Indocyanine Green Enhances Phototherapy Efficacy for Breast Cancer.","authors":"Zhaoming Guo, Guqing Li, Lanjun Shen, Jiawei Pan, Danni Dou, Yuwei Gong, Wanwan Shi, Yuhua Sun, Yi Zhang, Kun Ma, Changhao Cui, Wenxin Li, Qiang Liu, Xudong Zhu","doi":"10.2147/IJN.S478435","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Phototherapy has remarkable advantages in cancer treatment, owing to its high efficiency and minimal invasiveness. Indocyanine green (ICG) plays an important role in photo-mediated therapy. However, it has several disadvantages such as poor stability in aqueous solutions, easy aggregation of molecules, and short plasma half-life. This study aimed to develop an efficient nanoplatform to enhance the effects of photo-mediated therapy.</p><p><strong>Methods: </strong>We developed a novel bio-nanoplatform by integrating edible ginger-derived exosome-like nanoparticles (GDNPs) and the photosensitizer, ICG (GDNPs@ICG). GDNPs were isolated from ginger juice and loaded with ICG by co-incubation. The size distribution, zeta potential, morphology, total lipid content, and drug release behavior of the GDNPs@ICG were characterized. The photothermal performance, cellular uptake and distribution, cytotoxicity, anti-tumor effects, and mechanism of action of GDNPs@ICG were investigated both in vitro and in vivo.</p><p><strong>Results: </strong>GDNPs@ICG were taken up by tumor cells via a lipid-dependent pathway. When irradiated by an 808 nm NIR laser, GDNPs@ICG generated high levels of ROS, MDA, and local hyperthermia within the tumor, which caused lipid peroxidation and ER stress, thus enhancing the photo-mediated breast tumor therapy effect. Furthermore, in vivo studies demonstrated that engineered GDNPs@ICG significantly inhibited breast tumor growth and presented limited toxicity. Moreover, by detecting the expression of CD31, N-cadherin, IL-6, IFN-γ, CD8, p16, p21, and p53 in tumor tissues, we found that GDNPs@ICG substantially reduced angiogenesis, inhibited metastasis, activated the anti-tumor immune response, and promoted cell senescence in breast tumor.</p><p><strong>Conclusion: </strong>Our study demonstrated that the novel bio-nanoplatform GDNPs@ICG enhanced the photo-mediated therapeutic effect in breast tumor. GDNPs@ICG could be an alternative for precise and efficient anti-tumor phototherapy.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"1147-1169"},"PeriodicalIF":6.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S478435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Phototherapy has remarkable advantages in cancer treatment, owing to its high efficiency and minimal invasiveness. Indocyanine green (ICG) plays an important role in photo-mediated therapy. However, it has several disadvantages such as poor stability in aqueous solutions, easy aggregation of molecules, and short plasma half-life. This study aimed to develop an efficient nanoplatform to enhance the effects of photo-mediated therapy.

Methods: We developed a novel bio-nanoplatform by integrating edible ginger-derived exosome-like nanoparticles (GDNPs) and the photosensitizer, ICG (GDNPs@ICG). GDNPs were isolated from ginger juice and loaded with ICG by co-incubation. The size distribution, zeta potential, morphology, total lipid content, and drug release behavior of the GDNPs@ICG were characterized. The photothermal performance, cellular uptake and distribution, cytotoxicity, anti-tumor effects, and mechanism of action of GDNPs@ICG were investigated both in vitro and in vivo.

Results: GDNPs@ICG were taken up by tumor cells via a lipid-dependent pathway. When irradiated by an 808 nm NIR laser, GDNPs@ICG generated high levels of ROS, MDA, and local hyperthermia within the tumor, which caused lipid peroxidation and ER stress, thus enhancing the photo-mediated breast tumor therapy effect. Furthermore, in vivo studies demonstrated that engineered GDNPs@ICG significantly inhibited breast tumor growth and presented limited toxicity. Moreover, by detecting the expression of CD31, N-cadherin, IL-6, IFN-γ, CD8, p16, p21, and p53 in tumor tissues, we found that GDNPs@ICG substantially reduced angiogenesis, inhibited metastasis, activated the anti-tumor immune response, and promoted cell senescence in breast tumor.

Conclusion: Our study demonstrated that the novel bio-nanoplatform GDNPs@ICG enhanced the photo-mediated therapeutic effect in breast tumor. GDNPs@ICG could be an alternative for precise and efficient anti-tumor phototherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
期刊最新文献
Iron(III)-Quercetin Complex: In Vivo Acute Toxicity and Biodistribution of Novel MRI Agent. N-2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan-Aluminum Nano-Adjuvant Elicit Strong Immune Responses in Porcine Epidemic Diarrhea Inactivated Vaccine. A Procedural Overview of the Involvement of Small Molecules in the Nervous System in the Regulation of Bone Healing. Ginger-Derived Exosome-Like Nanoparticles Loaded With Indocyanine Green Enhances Phototherapy Efficacy for Breast Cancer. Human Primary Monocytes as a Model for in vitro Immunotoxicity Testing: Evaluation of the Regulatory Properties of TiO2 Nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1