Amino acid δ15N in eye lens laminae reveals life-time ontogenetic trophic shifts of a highly migratory species.

IF 1.7 3区 农林科学 Q2 FISHERIES Journal of fish biology Pub Date : 2025-02-03 DOI:10.1111/jfb.16061
Rocío I Ruiz-Cooley, Alfredo Ordiano-Flores
{"title":"Amino acid δ<sup>15</sup>N in eye lens laminae reveals life-time ontogenetic trophic shifts of a highly migratory species.","authors":"Rocío I Ruiz-Cooley, Alfredo Ordiano-Flores","doi":"10.1111/jfb.16061","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating the feeding ecology through the ontogenesis of highly migratory species such as the Pacific Bluefin tuna (PBFT; Thunnus orientalis) is difficult due to its extensive home range and cross-oceanic migration. Here, we show the potential of conducting nitrogen stable isotope (δ<sup>15</sup>N) analyses in bulk tissue and amino acids (AAs) in consecutive eye lens laminae of PBFT to reconstruct the trophic life history for an individual tuna. The δ<sup>15</sup>N<sub>bulk</sub> profiles between individuals caught in the wild and pen-raised were compared. For all individuals, δ<sup>15</sup>N<sub>bulk</sub> values increased with increasing eye lens diameter or fork length, and exhibited low variation among individual profiles despite tuna being captured in different months. Large δ<sup>15</sup>N<sub>bulk</sub> shifts (6.8‰-8.5‰) were quantified between the first and last deposited laminae for each individual, suggesting major ontogenetic changes in either foraging areas or trophic position. AA δ<sup>15</sup>N values indicate that this highly migratory schooling predator switches feeding areas from lower to higher δ<sup>15</sup>N baseline values, reflecting feeding on both sides of the north Pacific, and tends to feed on prey of higher trophic position as it grows. Together, stable isotope analysis in bulk tissue and individual AAs in eye lens laminae could be a powerful approach to investigate changes in the foraging habitat and trophic status of highly migratory species.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.16061","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the feeding ecology through the ontogenesis of highly migratory species such as the Pacific Bluefin tuna (PBFT; Thunnus orientalis) is difficult due to its extensive home range and cross-oceanic migration. Here, we show the potential of conducting nitrogen stable isotope (δ15N) analyses in bulk tissue and amino acids (AAs) in consecutive eye lens laminae of PBFT to reconstruct the trophic life history for an individual tuna. The δ15Nbulk profiles between individuals caught in the wild and pen-raised were compared. For all individuals, δ15Nbulk values increased with increasing eye lens diameter or fork length, and exhibited low variation among individual profiles despite tuna being captured in different months. Large δ15Nbulk shifts (6.8‰-8.5‰) were quantified between the first and last deposited laminae for each individual, suggesting major ontogenetic changes in either foraging areas or trophic position. AA δ15N values indicate that this highly migratory schooling predator switches feeding areas from lower to higher δ15N baseline values, reflecting feeding on both sides of the north Pacific, and tends to feed on prey of higher trophic position as it grows. Together, stable isotope analysis in bulk tissue and individual AAs in eye lens laminae could be a powerful approach to investigate changes in the foraging habitat and trophic status of highly migratory species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of fish biology
Journal of fish biology 生物-海洋与淡水生物学
CiteScore
4.00
自引率
10.00%
发文量
292
审稿时长
3 months
期刊介绍: The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.
期刊最新文献
Nitrogen excretion and oxygen consumption under severe hypoxia in siluriform fishes from the Amazon. Effects of enrofloxacin and povidone-iodine on immunity, the intestinal microbiome and transcriptome of juvenile grass carp (Ctenopharyngodon idella). Mass stranding of common (weedy) seadragons (Phyllopteryx taeniolatus) in Sydney: impacts and implications. Overwinter survival of an estuarine resident fish (Fundulus heteroclitus) in North Carolina salt marsh creeks. Morphological covariates of the ontogenetic shift from nauplii to copepodite prey in larval fish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1