Ayman M. Al-Qaaneh , Munthar Kadhim Abosaoda , Lalji Baldaniya , Junainah Abd Hamid , A. Sabarivani , Rajashree Panigrahi , Aman Shankhyan , M.F. Alajmi , Mounir M. Bekhit
{"title":"Computational investigation of graphyne monolayer as a promising carrier for anticancer drug delivery","authors":"Ayman M. Al-Qaaneh , Munthar Kadhim Abosaoda , Lalji Baldaniya , Junainah Abd Hamid , A. Sabarivani , Rajashree Panigrahi , Aman Shankhyan , M.F. Alajmi , Mounir M. Bekhit","doi":"10.1016/j.compbiolchem.2025.108369","DOIUrl":null,"url":null,"abstract":"<div><div>The study employs density functional theory (DFT) to examine the drug-loading efficiency of graphyne (GYN) as a vehicle for the Tioguanine (TG) drug. The researchers analyzed the interaction energy, electrical properties of pure GYN, TG molecules, and TG@GYN complex to determine their effectiveness as a carrier. Configuration a, which utilized nitrogen and sulfur atoms in interactions, was deemed the most suitable among the three considered TG sites. Gas-phase interaction between TG drug and GYN resulted in an energy of adsorption about −1.64 eV. The study utilized non-covalent interaction (NCI) analysis to assess the interaction between GYN and TG drug, indicating weak forces of interaction in the TG@GYN complex. The HOMO-LUMO and charge-decomposition analysis described the transfer of charge from TG molecules to pure GYN during formation of TG@GYN. The results suggest that GYN could function as a promising candidate for carrying and delivering TG drug, leading to further research into similar 2D nanomaterials for drug transport applications.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108369"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000295","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study employs density functional theory (DFT) to examine the drug-loading efficiency of graphyne (GYN) as a vehicle for the Tioguanine (TG) drug. The researchers analyzed the interaction energy, electrical properties of pure GYN, TG molecules, and TG@GYN complex to determine their effectiveness as a carrier. Configuration a, which utilized nitrogen and sulfur atoms in interactions, was deemed the most suitable among the three considered TG sites. Gas-phase interaction between TG drug and GYN resulted in an energy of adsorption about −1.64 eV. The study utilized non-covalent interaction (NCI) analysis to assess the interaction between GYN and TG drug, indicating weak forces of interaction in the TG@GYN complex. The HOMO-LUMO and charge-decomposition analysis described the transfer of charge from TG molecules to pure GYN during formation of TG@GYN. The results suggest that GYN could function as a promising candidate for carrying and delivering TG drug, leading to further research into similar 2D nanomaterials for drug transport applications.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.