A novel multifrequency-tuned transceiver array for human-brain 31P-MRSI at 7 T.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance in Medicine Pub Date : 2025-02-04 DOI:10.1002/mrm.30449
Xin Li, Xiao-Hong Zhu, Xiao-Liang Zhang, Matt Waks, Wei Chen
{"title":"A novel multifrequency-tuned transceiver array for human-brain <sup>31</sup>P-MRSI at 7 T.","authors":"Xin Li, Xiao-Hong Zhu, Xiao-Liang Zhang, Matt Waks, Wei Chen","doi":"10.1002/mrm.30449","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Phosphorus-31 (<sup>31</sup>P) MR spectroscopy imaging (MRSI) at 7 T is a powerful tool for investigating high-energy phosphate metabolism in human brains with significantly improved signal-to-noise ratio (SNR) and spectral resolution. However, this imaging technique requires dual-frequency radiofrequency coil for performing brain anatomical imaging and B<sub>0</sub> shimming at proton (<sup>1</sup>H) operation frequency, and <sup>31</sup>P MRSI at lower operation frequency. Herein, we introduce a novel <sup>31</sup>P-<sup>1</sup>H dual-frequency radiofrequency coil design using a double-tuned and double-matched (DODO) coil that does not require complex circuitry or two coil layers and exhibits similar imaging performance as to single-frequency control coils for both <sup>31</sup>P and <sup>1</sup>H imaging operations.</p><p><strong>Methods: </strong>We constructed an eight-element <sup>31</sup>P-<sup>1</sup>H dual-frequency DODO transceiver array and compared its performance with a quadrature-driven dual-tuned eight-element <sup>31</sup>P and eight-element <sup>1</sup>H transverse electromagnetic volume coil for both phantom and in vivo human-brain <sup>31</sup>P-MRSI studies at 7 T.</p><p><strong>Results: </strong>The DODO transceiver array achieved high spatiotemporal resolution <sup>31</sup>P MRSI with 2.5-cc nominal voxel size and 22-min scan time covering the entire human brain, showing excellent SNR for mapping cerebral phosphorous metabolites such as phosphocreatine, adenosine triphosphate, and other low-concentration metabolites. Compared with the transverse electromagnetic volume coil, the DODO array demonstrated large improvements in <sup>31</sup>P-MRSI SNR in both phantom and human brain studies, with over 5-fold SNR gain in peripheral regions and over 2-fold SNR gain in central brain regions.</p><p><strong>Conclusion: </strong>This simple and cost-effective array design and excellent performance can greatly benefit human-brain <sup>31</sup>P-MRSI applications at 7 T.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30449","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Phosphorus-31 (31P) MR spectroscopy imaging (MRSI) at 7 T is a powerful tool for investigating high-energy phosphate metabolism in human brains with significantly improved signal-to-noise ratio (SNR) and spectral resolution. However, this imaging technique requires dual-frequency radiofrequency coil for performing brain anatomical imaging and B0 shimming at proton (1H) operation frequency, and 31P MRSI at lower operation frequency. Herein, we introduce a novel 31P-1H dual-frequency radiofrequency coil design using a double-tuned and double-matched (DODO) coil that does not require complex circuitry or two coil layers and exhibits similar imaging performance as to single-frequency control coils for both 31P and 1H imaging operations.

Methods: We constructed an eight-element 31P-1H dual-frequency DODO transceiver array and compared its performance with a quadrature-driven dual-tuned eight-element 31P and eight-element 1H transverse electromagnetic volume coil for both phantom and in vivo human-brain 31P-MRSI studies at 7 T.

Results: The DODO transceiver array achieved high spatiotemporal resolution 31P MRSI with 2.5-cc nominal voxel size and 22-min scan time covering the entire human brain, showing excellent SNR for mapping cerebral phosphorous metabolites such as phosphocreatine, adenosine triphosphate, and other low-concentration metabolites. Compared with the transverse electromagnetic volume coil, the DODO array demonstrated large improvements in 31P-MRSI SNR in both phantom and human brain studies, with over 5-fold SNR gain in peripheral regions and over 2-fold SNR gain in central brain regions.

Conclusion: This simple and cost-effective array design and excellent performance can greatly benefit human-brain 31P-MRSI applications at 7 T.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
期刊最新文献
Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 1: In vivo small-animal imaging. Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography. On the RF safety of titanium mesh head implants in 7 T MRI systems: an investigation. 3D joint T1/T1 ρ/T2 mapping and water-fat imaging for contrast-agent free myocardial tissue characterization at 1.5T. Whole liver phase-based R2 mapping in liver iron overload within a breath-hold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1