MLAR-UNet: LDCT image denoising based on U-Net with multiple lightweight attention-based modules and residual reinforcement.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-02-03 DOI:10.1088/1361-6560/adb19a
Hao Tang, Ningfeng Que, Yanwen Tian, Mingzhe Li, Alessandro Perelli, Yueyang Teng
{"title":"MLAR-UNet: LDCT image denoising based on U-Net with multiple lightweight attention-based modules and residual reinforcement.","authors":"Hao Tang, Ningfeng Que, Yanwen Tian, Mingzhe Li, Alessandro Perelli, Yueyang Teng","doi":"10.1088/1361-6560/adb19a","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Computed tomography (CT) is a crucial medical imaging technique which uses X-ray radiation to identify cancer tissues. Since radiation poses a significant health risk, low dose acquisition procedures need to be adopted. However, low-dose CT (LDCT) can cause higher noise and artifacts which massively degrade the diagnosis.</p><p><strong>Approach: </strong>To denoise LDCT images more effectively, this paper proposes a deep learning method based on U-Net with multiple lightweight attention-based modules and residual reinforcement (MLAR-UNet), We integrate a U-Net architecture with several advanced modules, including Convolutional Block Attention Module (CBAM), Cross Residual Module (CR), Attention Cross Reinforcement Module (ACRM), and Convolution and Transformer Cross Attention Module (CTCAM). Among these modules, CBAM applies channel and spatial attention mechanisms to enhance local feature representation. However, serious detail loss caused by incorrect embedding of CBAM for LDCT denoising is verified in this study. To relieve this, we introduce CR to reduce information loss in deeper layers, preserving features more effectively. To address the excessive local attention of CBAM, we design ACRM, which incorporates Transformer to adjust the attention weights. Furthermore, we design CTCAM, which leverages a complex combination of Transformer and convolution to capture multi-scale information and compute more accurate attention weights.</p><p><strong>Results: </strong>Experiments verify the embedding rationality and validity of each module and show that the proposed MLAR-UNet denoises LDCT images more effectively and preserves more details than many state-of-the-art (SOTA) methods on clinical chest and abdominal CT datasets.</p><p><strong>Significance: </strong>The proposed MLAR-UNet not only demonstrates superior LDCT image denoising capability but also highlights the strong detail comprehension and negligible overheads of our designed ACRM and CTCAM. These findings provide a novel approach to integrating Transformer more efficiently in image processing.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb19a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Computed tomography (CT) is a crucial medical imaging technique which uses X-ray radiation to identify cancer tissues. Since radiation poses a significant health risk, low dose acquisition procedures need to be adopted. However, low-dose CT (LDCT) can cause higher noise and artifacts which massively degrade the diagnosis.

Approach: To denoise LDCT images more effectively, this paper proposes a deep learning method based on U-Net with multiple lightweight attention-based modules and residual reinforcement (MLAR-UNet), We integrate a U-Net architecture with several advanced modules, including Convolutional Block Attention Module (CBAM), Cross Residual Module (CR), Attention Cross Reinforcement Module (ACRM), and Convolution and Transformer Cross Attention Module (CTCAM). Among these modules, CBAM applies channel and spatial attention mechanisms to enhance local feature representation. However, serious detail loss caused by incorrect embedding of CBAM for LDCT denoising is verified in this study. To relieve this, we introduce CR to reduce information loss in deeper layers, preserving features more effectively. To address the excessive local attention of CBAM, we design ACRM, which incorporates Transformer to adjust the attention weights. Furthermore, we design CTCAM, which leverages a complex combination of Transformer and convolution to capture multi-scale information and compute more accurate attention weights.

Results: Experiments verify the embedding rationality and validity of each module and show that the proposed MLAR-UNet denoises LDCT images more effectively and preserves more details than many state-of-the-art (SOTA) methods on clinical chest and abdominal CT datasets.

Significance: The proposed MLAR-UNet not only demonstrates superior LDCT image denoising capability but also highlights the strong detail comprehension and negligible overheads of our designed ACRM and CTCAM. These findings provide a novel approach to integrating Transformer more efficiently in image processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1