Model-informed repurposing of eliglustat for treatment and prophylaxis of Shiga toxin-producing Escherichia coli hemolytic-uremic syndrome (STEC-HUS) in children.

IF 2.6 3区 医学 Q1 PEDIATRICS Pediatric Nephrology Pub Date : 2025-02-03 DOI:10.1007/s00467-025-06688-3
David F G J Wolthuis, Jolien J M Freriksen, Mendy Ter Avest, Reena V Kartha, Saskia N de Wildt, Kioa Wijnsma, Nicole C A J van de Kar, Rob Ter Heine
{"title":"Model-informed repurposing of eliglustat for treatment and prophylaxis of Shiga toxin-producing Escherichia coli hemolytic-uremic syndrome (STEC-HUS) in children.","authors":"David F G J Wolthuis, Jolien J M Freriksen, Mendy Ter Avest, Reena V Kartha, Saskia N de Wildt, Kioa Wijnsma, Nicole C A J van de Kar, Rob Ter Heine","doi":"10.1007/s00467-025-06688-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Shiga toxin-producing Escherichia coli hemolytic-uremic syndrome (STEC-HUS) is a severe illness predominantly affecting young children, with limited treatment options beyond supportive care. Eliglustat, approved for Gaucher disease, shows potential in reducing Shiga toxin binding to target glomerular endothelial cells in vitro, prompting interest as a treatment for STEC-HUS. However, it remains unknown what dose is likely to be effective and safe for treatment of STEC-HUS in the pediatric population. We hypothesize that effective and safe levels of eliglustat can be reached in children.</p><p><strong>Methods: </strong>We identified pharmacokinetic targets of efficacy for treatment and prophylaxis of STEC-HUS based on a preclinical model and human cardiac safety data. Then, we developed oral and intravenous dosing regimens using population pharmacokinetic (popPK) simulations based on an existing model enriched to allow extrapolation to a simulated virtual pediatric population. These dosing regimens were then confirmed using a verified physiologically based pharmacokinetic (PBPK) model.</p><p><strong>Results: </strong>We simulated, using popPK data, oral and intravenous dosing regimens resulting in adequate target exposure in > 90% of all patients, with minimal expected risk for cardiotoxicity. Confirmation of these dosing regimens with PBPK modeling resulted in very similar exposure, with lower interindividual variability and minimal toxicity potential.</p><p><strong>Conclusions: </strong>Based on pharmacokinetic modeling, we developed oral and intravenous eliglustat dosing regimens that are likely safe and effective for treatment of STEC-HUS and prophylaxis in case of outbreaks of STEC infections. Clinical evaluation of these dosing regimens in children suspected of or diagnosed with STEC-HUS is required and should include assessment of pharmacokinetics, efficacy, and safety (e.g., ECG monitoring).</p>","PeriodicalId":19735,"journal":{"name":"Pediatric Nephrology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00467-025-06688-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Shiga toxin-producing Escherichia coli hemolytic-uremic syndrome (STEC-HUS) is a severe illness predominantly affecting young children, with limited treatment options beyond supportive care. Eliglustat, approved for Gaucher disease, shows potential in reducing Shiga toxin binding to target glomerular endothelial cells in vitro, prompting interest as a treatment for STEC-HUS. However, it remains unknown what dose is likely to be effective and safe for treatment of STEC-HUS in the pediatric population. We hypothesize that effective and safe levels of eliglustat can be reached in children.

Methods: We identified pharmacokinetic targets of efficacy for treatment and prophylaxis of STEC-HUS based on a preclinical model and human cardiac safety data. Then, we developed oral and intravenous dosing regimens using population pharmacokinetic (popPK) simulations based on an existing model enriched to allow extrapolation to a simulated virtual pediatric population. These dosing regimens were then confirmed using a verified physiologically based pharmacokinetic (PBPK) model.

Results: We simulated, using popPK data, oral and intravenous dosing regimens resulting in adequate target exposure in > 90% of all patients, with minimal expected risk for cardiotoxicity. Confirmation of these dosing regimens with PBPK modeling resulted in very similar exposure, with lower interindividual variability and minimal toxicity potential.

Conclusions: Based on pharmacokinetic modeling, we developed oral and intravenous eliglustat dosing regimens that are likely safe and effective for treatment of STEC-HUS and prophylaxis in case of outbreaks of STEC infections. Clinical evaluation of these dosing regimens in children suspected of or diagnosed with STEC-HUS is required and should include assessment of pharmacokinetics, efficacy, and safety (e.g., ECG monitoring).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pediatric Nephrology
Pediatric Nephrology 医学-泌尿学与肾脏学
CiteScore
4.70
自引率
20.00%
发文量
465
审稿时长
1 months
期刊介绍: International Pediatric Nephrology Association Pediatric Nephrology publishes original clinical research related to acute and chronic diseases that affect renal function, blood pressure, and fluid and electrolyte disorders in children. Studies may involve medical, surgical, nutritional, physiologic, biochemical, genetic, pathologic or immunologic aspects of disease, imaging techniques or consequences of acute or chronic kidney disease. There are 12 issues per year that contain Editorial Commentaries, Reviews, Educational Reviews, Original Articles, Brief Reports, Rapid Communications, Clinical Quizzes, and Letters to the Editors.
期刊最新文献
An updated approach to the evaluation of the urinary sediment. Eculizumab as first-line treatment for patients with severe presentation of complement factor H antibody-mediated hemolytic uremic syndrome. Extracorporeal pediatric renal replacement therapy: diversifying application beyond kidney failure. Bone impairment in atypical hemolytic and uremic syndrome treated by long-term eculizumab. Kidney and vascular involvement in Alagille syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1