Alessia Anastasia, Laura Formenti, Paola Ostano, Lucia Minoli, Andrea Resovi, Lavinia Morosi, Claudia Fioravanti, Edoardo Micotti, Cristina Matteo, Eugenio Scanziani, Giovanna Chiorino, Raffaella Giavazzi, Carmen Ghilardi, Dorina Belotti
{"title":"Stroma gene signature predicts responsiveness to chemotherapy in pancreatic ductal adenocarcinoma patient-derived xenograft models.","authors":"Alessia Anastasia, Laura Formenti, Paola Ostano, Lucia Minoli, Andrea Resovi, Lavinia Morosi, Claudia Fioravanti, Edoardo Micotti, Cristina Matteo, Eugenio Scanziani, Giovanna Chiorino, Raffaella Giavazzi, Carmen Ghilardi, Dorina Belotti","doi":"10.1002/1878-0261.13816","DOIUrl":null,"url":null,"abstract":"<p><p>Despite many efforts to understand the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) treatment resistance, there is still no reliable method for selecting patients who could benefit from standard pharmacological treatment. Here, four PDAC patient-derived xenografts (PDAC-PDXs) with different responses to gemcitabine plus nab-paclitaxel (nanoparticle albumin-bound paclitaxel) were studied to dissect the contribution of both tumor and host microenvironment to treatment response. PDAC-PDXs transplanted into the pancreas of immunodeficient mice retained the main genetic and histopathological characteristics of the original human tumors, including invasiveness and desmoplastic reaction. Response to chemotherapy was associated with a specific 294 stroma gene signature and was not due to the intrinsic responsiveness of tumor cells or differences in drug delivery. Human dataset analysis validated the expression of the 294 stroma gene signature in PDAC clinical samples, confirming PDAC-PDXs as a useful tool to study the biology of tumor-host interactions and to test drug efficacy. In summary, we identified a stroma gene signature that differentiates PDAC-PDXs that are responsive to gemcitabine plus Nab-paclitaxel treatment from those that are not, confirming the active role of the tumor microenvironment in the drug response.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13816","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Despite many efforts to understand the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) treatment resistance, there is still no reliable method for selecting patients who could benefit from standard pharmacological treatment. Here, four PDAC patient-derived xenografts (PDAC-PDXs) with different responses to gemcitabine plus nab-paclitaxel (nanoparticle albumin-bound paclitaxel) were studied to dissect the contribution of both tumor and host microenvironment to treatment response. PDAC-PDXs transplanted into the pancreas of immunodeficient mice retained the main genetic and histopathological characteristics of the original human tumors, including invasiveness and desmoplastic reaction. Response to chemotherapy was associated with a specific 294 stroma gene signature and was not due to the intrinsic responsiveness of tumor cells or differences in drug delivery. Human dataset analysis validated the expression of the 294 stroma gene signature in PDAC clinical samples, confirming PDAC-PDXs as a useful tool to study the biology of tumor-host interactions and to test drug efficacy. In summary, we identified a stroma gene signature that differentiates PDAC-PDXs that are responsive to gemcitabine plus Nab-paclitaxel treatment from those that are not, confirming the active role of the tumor microenvironment in the drug response.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.