Streptococcus mutans regulates ubiquitin modification of Candida albicans in the bacterial-fungal interaction.

IF 5.5 1区 医学 Q1 MICROBIOLOGY PLoS Pathogens Pub Date : 2025-02-03 eCollection Date: 2025-02-01 DOI:10.1371/journal.ppat.1012887
Yixin Zhang, Zhen Gu, Zhengyi Li, Qinrui Wu, Xin Xu, Xian Peng
{"title":"Streptococcus mutans regulates ubiquitin modification of Candida albicans in the bacterial-fungal interaction.","authors":"Yixin Zhang, Zhen Gu, Zhengyi Li, Qinrui Wu, Xin Xu, Xian Peng","doi":"10.1371/journal.ppat.1012887","DOIUrl":null,"url":null,"abstract":"<p><p>The ecological interplay between Streptococcus mutans and Candida albicans within dental plaque biofilms is an important factor driving pathogenesis of dental caries. This study aimed to investigate S. mutans regulation of C. albicans growth and virulence through extracellular membrane vesicles (EMVs) and modulation of ubiquitination, a key protein post-translational modification. We established a transwell co-culture model to enable \"contact-independent\" interactions between S. mutans and C. albicans. S. mutans EMVs were found to directly associate with C. albicans cells and promote biofilm formation and growth. Quantitative ubiquitination profiling revealed S. mutans dramatically alters the ubiquitination landscape in C. albicans. We identified 10,661 ubiquitination sites across the C. albicans proteome and their enrichment in pathways related to translation, metabolism, and stress adaptation. Co-culture with S. mutans led to upregulation of ubiquitination on 398 proteins involved in sugar catabolism and generation of reducing power. S. mutans upregulated ubiquitination of superoxide dismutase-3 of C. albicans, inducing its degradation and heightened reactive oxygen species levels, and concomitantly stimulated C. albicans growth. Our findings elucidate EMVs and ubiquitination modulation as key mechanisms governing the S. mutans-C. albicans interplay and provide new insights into the promotion of a cariogenic oral biofilm environment. This study significantly advances understanding of the complex molecular interactions underlying dental plaque dysbiosis and caries pathogenesis.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 2","pages":"e1012887"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012887","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ecological interplay between Streptococcus mutans and Candida albicans within dental plaque biofilms is an important factor driving pathogenesis of dental caries. This study aimed to investigate S. mutans regulation of C. albicans growth and virulence through extracellular membrane vesicles (EMVs) and modulation of ubiquitination, a key protein post-translational modification. We established a transwell co-culture model to enable "contact-independent" interactions between S. mutans and C. albicans. S. mutans EMVs were found to directly associate with C. albicans cells and promote biofilm formation and growth. Quantitative ubiquitination profiling revealed S. mutans dramatically alters the ubiquitination landscape in C. albicans. We identified 10,661 ubiquitination sites across the C. albicans proteome and their enrichment in pathways related to translation, metabolism, and stress adaptation. Co-culture with S. mutans led to upregulation of ubiquitination on 398 proteins involved in sugar catabolism and generation of reducing power. S. mutans upregulated ubiquitination of superoxide dismutase-3 of C. albicans, inducing its degradation and heightened reactive oxygen species levels, and concomitantly stimulated C. albicans growth. Our findings elucidate EMVs and ubiquitination modulation as key mechanisms governing the S. mutans-C. albicans interplay and provide new insights into the promotion of a cariogenic oral biofilm environment. This study significantly advances understanding of the complex molecular interactions underlying dental plaque dysbiosis and caries pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
Structure-based design of an immunogenic, conformationally stabilized FimH antigen for a urinary tract infection vaccine. Structures of two lyssavirus glycoproteins trapped in pre- and post-fusion states and the implications on the spatial-temporal conformational transition along with pH-decrease. Exploring the activity of the putative Δ6-desaturase and its role in bloodstream form life-cycle transitions in Trypanosoma brucei. Establishment of reverse genetics systems for Colorado tick fever virus. Inhibition of the Integrated stress response by Epstein-Barr virus oncoprotein LMP1 attenuates epithelial cell differentiation and lytic viral reactivation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1