Automated classification of elongated styloid processes using deep learning models-an artificial intelligence diagnostics.

IF 3 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Frontiers in oral health Pub Date : 2025-01-20 eCollection Date: 2024-01-01 DOI:10.3389/froh.2024.1424840
Anuradha Ganesan, N Gautham Kumar, Prabhu Manickam Natarajan, Jeevitha Gauthaman
{"title":"Automated classification of elongated styloid processes using deep learning models-an artificial intelligence diagnostics.","authors":"Anuradha Ganesan, N Gautham Kumar, Prabhu Manickam Natarajan, Jeevitha Gauthaman","doi":"10.3389/froh.2024.1424840","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The styloid process (SP), a bony projection from the temporal bone which can become elongated, resulting in cervical pain, throat discomfort, and headaches. Associated with Eagle syndrome, this elongation can compress nearby nerves and blood vessels, leading to potentially severe complications. Traditional imaging-based methods for classifying various types of elongated styloid processes (ESP) are challenging due to variations in image quality, patient positioning, and anatomical differences, which limit diagnostic accuracy. Recent advancements in artificial intelligence, particularly deep learning, provide more efficient classification of elongated styloid processes.</p><p><strong>Objective: </strong>This study aims to develop an automated classification system for elongated styloid processes using deep learning models and to evaluate the performance of two distinct architectures, EfficientNetB5 and InceptionV3, in classifying elongated styloid processes.</p><p><strong>Methods: </strong>This retrospective analysis classified elongated styloid processes using Ortho Pantomograms (OPG) sourced from our oral radiology archives. Styloid process lengths were measured using ImageJ software. A dataset of 330 elongated and 120 normal styloid images was curated for deep learning model training and testing. Pre-processing included median filtering and resizing, with data augmentation applied to improve generalization. EfficientNetB5 and InceptionV3 models, utilized as feature extractors, captured unique styloid characteristics. Model performance was evaluated based on accuracy, precision, recall, and F1-score, with a comparative analysis conducted to identify the most effective model and support advancements in patient care.</p><p><strong>Results: </strong>The EfficientNetB5 model achieved an accuracy of 97.49%, a precision of 98.00%, a recall of 97.00%, and an F1-score of 97.00%, demonstrating strong overall performance. Additionally, the model achieved an AUC of 0.9825. By comparison, the InceptionV3 model achieved an accuracy of 84.11%, a precision of 85.00%, a recall of 84.00%, and an F1-score of 84.00%, with an AUC of 0.8943. This comparison indicates that EfficientNetB5 outperformed InceptionV3 across all key metrics.</p><p><strong>Conclusion: </strong>In conclusion, our study presents a deep learning-based approach utilizing EfficientNetB5 and InceptionV3 to accurately categorize elongated styloid processes into distinct types based on their morphological characteristics from digital panoramic radiographs. Our results indicate that these models, particularly EfficientNetB5, can enhance diagnostic accuracy and streamline clinical workflows, contributing to improved patient care.</p>","PeriodicalId":94016,"journal":{"name":"Frontiers in oral health","volume":"5 ","pages":"1424840"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in oral health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/froh.2024.1424840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The styloid process (SP), a bony projection from the temporal bone which can become elongated, resulting in cervical pain, throat discomfort, and headaches. Associated with Eagle syndrome, this elongation can compress nearby nerves and blood vessels, leading to potentially severe complications. Traditional imaging-based methods for classifying various types of elongated styloid processes (ESP) are challenging due to variations in image quality, patient positioning, and anatomical differences, which limit diagnostic accuracy. Recent advancements in artificial intelligence, particularly deep learning, provide more efficient classification of elongated styloid processes.

Objective: This study aims to develop an automated classification system for elongated styloid processes using deep learning models and to evaluate the performance of two distinct architectures, EfficientNetB5 and InceptionV3, in classifying elongated styloid processes.

Methods: This retrospective analysis classified elongated styloid processes using Ortho Pantomograms (OPG) sourced from our oral radiology archives. Styloid process lengths were measured using ImageJ software. A dataset of 330 elongated and 120 normal styloid images was curated for deep learning model training and testing. Pre-processing included median filtering and resizing, with data augmentation applied to improve generalization. EfficientNetB5 and InceptionV3 models, utilized as feature extractors, captured unique styloid characteristics. Model performance was evaluated based on accuracy, precision, recall, and F1-score, with a comparative analysis conducted to identify the most effective model and support advancements in patient care.

Results: The EfficientNetB5 model achieved an accuracy of 97.49%, a precision of 98.00%, a recall of 97.00%, and an F1-score of 97.00%, demonstrating strong overall performance. Additionally, the model achieved an AUC of 0.9825. By comparison, the InceptionV3 model achieved an accuracy of 84.11%, a precision of 85.00%, a recall of 84.00%, and an F1-score of 84.00%, with an AUC of 0.8943. This comparison indicates that EfficientNetB5 outperformed InceptionV3 across all key metrics.

Conclusion: In conclusion, our study presents a deep learning-based approach utilizing EfficientNetB5 and InceptionV3 to accurately categorize elongated styloid processes into distinct types based on their morphological characteristics from digital panoramic radiographs. Our results indicate that these models, particularly EfficientNetB5, can enhance diagnostic accuracy and streamline clinical workflows, contributing to improved patient care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Dental service for United Nations peacekeepers coping with COVID-19 in Bukavu: preparation, implementation and recommendation. Cultural practices, oral health service utilisation and oral health policy and guidelines development in Africa: insights from the yorùbá ethnic group. Editorial: Embedding current trends and innovative pedagogies in education in oral health: advancing educational practices and research. Assessment of salivary matrix metalloproteinase (MMP8) and activated salivary matrix metalloproteinase (aMMP8) in periodontitis patients: a systematic review and meta-analysis. Exploring the correlation of epidemiological and clinical factors with facial injury severity scores in maxillofacial trauma: a comprehensive analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1