Presenting Antimicrobial Peptides on Poly(ethylene glycol): Star-Shaped vs Comb-Like Architectures

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2025-02-05 DOI:10.1021/acs.macromol.4c02762
Zixian Cui, Elliot A. Brna, Matthew A. Crawford, Puthayalai Treerat, Mobina Alimadad, Molly A. Hughes, Rachel A. Letteri
{"title":"Presenting Antimicrobial Peptides on Poly(ethylene glycol): Star-Shaped vs Comb-Like Architectures","authors":"Zixian Cui, Elliot A. Brna, Matthew A. Crawford, Puthayalai Treerat, Mobina Alimadad, Molly A. Hughes, Rachel A. Letteri","doi":"10.1021/acs.macromol.4c02762","DOIUrl":null,"url":null,"abstract":"Conjugating antimicrobial peptides (AMPs) to nonlinear polymers is a promising strategy to overcome the translational challenges of AMPs toward treating infections caused by antibiotic-resistant bacteria. Nonlinear polymers, and therefore conjugates, can be prepared with various architectures (e.g., star-shaped, comb-like, hyperbranched, etc.), however, the effects of polymer architecture on antimicrobial performance and related properties, like size and morphology in solution and secondary structure, are not yet well-understood. Here, we compare conjugates of the human chemokine-derived AMP stapled P9 with poly(ethylene glycol) (PEG) prepared in two of the major nonlinear architectures: star-shaped and comb-like. At comparable molecular weights and compositions (peptide wt %), comb-like conjugates afford increased helicity, solubility, antimicrobial activity, and proteolytic stability compared to star-shaped analogs. We then leveraged the expansive design space of comb-like architectures to prepare conjugates with different backbone lengths and PEG side chain lengths, with shorter PEG side chains leading to increased helicity, yet potentially less shielding from proteolytic degradation and the longest backbone lengths furnishing the most potent antimicrobial activity. Both comb-like and star-shaped conjugates display high zeta potential, indicating that the cationic AMPs were accessible for electrostatic interactions with bacterial membranes. Yet, the comb-like conjugates showed a higher fraction of unimolecular structures indicative of a lower propensity for supramolecular assembly that could be encumbering the desired AMP-bacteria interactions in the star-shaped conjugates. Together, our work shows comb-like AMP-polymer conjugates to outperform analogous star-shaped conjugates, while adding design flexibility to access an expansive range of monomer chemistries, monomer distributions, and backbone lengths to modulate performance-determining properties and ultimately furnish an effective suite of AMP-polymer materials as alternatives to conventional antibiotics for combatting bacterial infections.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02762","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugating antimicrobial peptides (AMPs) to nonlinear polymers is a promising strategy to overcome the translational challenges of AMPs toward treating infections caused by antibiotic-resistant bacteria. Nonlinear polymers, and therefore conjugates, can be prepared with various architectures (e.g., star-shaped, comb-like, hyperbranched, etc.), however, the effects of polymer architecture on antimicrobial performance and related properties, like size and morphology in solution and secondary structure, are not yet well-understood. Here, we compare conjugates of the human chemokine-derived AMP stapled P9 with poly(ethylene glycol) (PEG) prepared in two of the major nonlinear architectures: star-shaped and comb-like. At comparable molecular weights and compositions (peptide wt %), comb-like conjugates afford increased helicity, solubility, antimicrobial activity, and proteolytic stability compared to star-shaped analogs. We then leveraged the expansive design space of comb-like architectures to prepare conjugates with different backbone lengths and PEG side chain lengths, with shorter PEG side chains leading to increased helicity, yet potentially less shielding from proteolytic degradation and the longest backbone lengths furnishing the most potent antimicrobial activity. Both comb-like and star-shaped conjugates display high zeta potential, indicating that the cationic AMPs were accessible for electrostatic interactions with bacterial membranes. Yet, the comb-like conjugates showed a higher fraction of unimolecular structures indicative of a lower propensity for supramolecular assembly that could be encumbering the desired AMP-bacteria interactions in the star-shaped conjugates. Together, our work shows comb-like AMP-polymer conjugates to outperform analogous star-shaped conjugates, while adding design flexibility to access an expansive range of monomer chemistries, monomer distributions, and backbone lengths to modulate performance-determining properties and ultimately furnish an effective suite of AMP-polymer materials as alternatives to conventional antibiotics for combatting bacterial infections.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Extensional Rheology of Unentangled Azobenzene Polymers: Synergetic Effect of π–π Interactions and Side-Chain Self-Dilution Axial Anagostic Interaction in α-Diimine Nickel Catalysts: An Ultraefficient Occupation Strategy in Suppressing Associative Chain Transfers to Achieve UHMWPEs Sequence Design of Poly(ester-co-carbonate): A Unique Example of Degradable Self-Healing Copolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1