Jasper Kranias, Guillaume Thekkadath, Khabat Heshami, Aaron Z. Goldberg
{"title":"Metrological Advantages in Seeded and Lossy Nonlinear Interferometers","authors":"Jasper Kranias, Guillaume Thekkadath, Khabat Heshami, Aaron Z. Goldberg","doi":"10.22331/q-2025-02-04-1619","DOIUrl":null,"url":null,"abstract":"The quantum Fisher information (QFI) bounds the sensitivity of a quantum measurement, heralding the conditions for quantum advantages when compared with classical strategies. Here, we calculate analytical expressions for the QFI of nonlinear interferometers under lossy conditions and with coherent-state seeding. We normalize the results based on the number of photons going through the sample that induces a phase shift on the incident quantum state, which eliminates some of the previously declared metrological advantages. We analyze the performance of nonlinear interferometers in a variety of geometries and robustness of the quantum advantage with respect to internal and external loss through direct comparison with a linear interferometer. We find the threshold on the internal loss at which the quantum advantage vanishes, specify when and how much coherent-state seeding optimally counters internal loss, and show that a sufficient amount of squeezing confers to the quantum advantages robustness against external loss and inefficient detection.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"8 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-04-1619","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum Fisher information (QFI) bounds the sensitivity of a quantum measurement, heralding the conditions for quantum advantages when compared with classical strategies. Here, we calculate analytical expressions for the QFI of nonlinear interferometers under lossy conditions and with coherent-state seeding. We normalize the results based on the number of photons going through the sample that induces a phase shift on the incident quantum state, which eliminates some of the previously declared metrological advantages. We analyze the performance of nonlinear interferometers in a variety of geometries and robustness of the quantum advantage with respect to internal and external loss through direct comparison with a linear interferometer. We find the threshold on the internal loss at which the quantum advantage vanishes, specify when and how much coherent-state seeding optimally counters internal loss, and show that a sufficient amount of squeezing confers to the quantum advantages robustness against external loss and inefficient detection.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.