Self-optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-05 DOI:10.1002/anie.202424074
M. Sc. Christean Nickel, M. Sc. David Leander Troglauer, Dr. Zsolt Dallos, Dr. Dhouha Abid, M. Sc. Kevin Sowa, Dr. Magdalena Ola Cichocka, Dr. Ute Kolb, M. Sc. Boris Mashtakov, Dr. Bahareh Feizi Mohazzab, B. Sc. Shikang Han, Leon Prädel, Prof. Dr. Lijie Ci, Prof. Dr. Deping Li, Prof. Dr. Xiaohang Lin, Dr. Minghao Hua, Dr. Rongji Liu, Dr. Dandan Gao
{"title":"Self-optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media","authors":"M. Sc. Christean Nickel,&nbsp;M. Sc. David Leander Troglauer,&nbsp;Dr. Zsolt Dallos,&nbsp;Dr. Dhouha Abid,&nbsp;M. Sc. Kevin Sowa,&nbsp;Dr. Magdalena Ola Cichocka,&nbsp;Dr. Ute Kolb,&nbsp;M. Sc. Boris Mashtakov,&nbsp;Dr. Bahareh Feizi Mohazzab,&nbsp;B. Sc. Shikang Han,&nbsp;Leon Prädel,&nbsp;Prof. Dr. Lijie Ci,&nbsp;Prof. Dr. Deping Li,&nbsp;Prof. Dr. Xiaohang Lin,&nbsp;Dr. Minghao Hua,&nbsp;Dr. Rongji Liu,&nbsp;Dr. Dandan Gao","doi":"10.1002/anie.202424074","DOIUrl":null,"url":null,"abstract":"<p>Self-optimizing mixed metal oxides represent a novel class of electrocatalysts for the advanced oxygen evolution reaction (OER). Here, we report self-assembled cobalt tungsten oxide nanostructures on a lab-synthesized copper oxide substrate through a single-step deposition approach. The resulting composite exhibits remarkable self-optimization behavior, shown by significantly reduced overpotentials and enhanced current densities, accompanied with substantial increase in OER kinetics, electrocatalytically active surface area, surface wettability, and electrical conductivity. Under operating conditions, interfacial restructuring of the electrocatalyst reveals the in situ formation of oxidized cobalt species as the true active site. Complementary density functional theory (DFT) calculations further demonstrate the formation of *OOH intermediate as the rate-determining step of OER, and highlight the adaptive binding of oxygen intermediates, which transitions from tungsten to cobalt site during OER process. Our study provides a fundamental understanding of the self-optimization mechanism and advances the knowledge-driven design of efficient water-splitting electrocatalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 29","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202424074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202424074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Self-optimizing mixed metal oxides represent a novel class of electrocatalysts for the advanced oxygen evolution reaction (OER). Here, we report self-assembled cobalt tungsten oxide nanostructures on a lab-synthesized copper oxide substrate through a single-step deposition approach. The resulting composite exhibits remarkable self-optimization behavior, shown by significantly reduced overpotentials and enhanced current densities, accompanied with substantial increase in OER kinetics, electrocatalytically active surface area, surface wettability, and electrical conductivity. Under operating conditions, interfacial restructuring of the electrocatalyst reveals the in situ formation of oxidized cobalt species as the true active site. Complementary density functional theory (DFT) calculations further demonstrate the formation of *OOH intermediate as the rate-determining step of OER, and highlight the adaptive binding of oxygen intermediates, which transitions from tungsten to cobalt site during OER process. Our study provides a fundamental understanding of the self-optimization mechanism and advances the knowledge-driven design of efficient water-splitting electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自优化的钴钨氧化物电催化剂在碱性介质中加速析氧
自优化混合金属氧化物是一类用于高级析氧反应的新型电催化剂。在这里,我们报告了通过单步沉积方法在实验室合成的氧化铜衬底上自组装的钴钨氧化物纳米结构。所得到的复合材料表现出显著的自优化行为,表现为显著降低过电位和增强电流密度,同时OER动力学、电催化活性表面积、表面润湿性和导电性大幅提高。在操作条件下,电催化剂的界面重构揭示了原位形成的氧化钴是真正的活性位点。互补密度泛函理论(DFT)计算进一步证明了*OOH中间体的形成是OER的速率决定步骤,并强调了氧中间体的自适应结合,在OER过程中从钨位过渡到钴位。我们的研究为了解自优化机制提供了基础,并推动了高效水分解电催化剂的知识驱动设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Self-assembled Helical Tetramer Stack of Terrylene Bisimide in Solution and Crystalline State Trinuclear Heptamethine Dyes for Shortwave Infrared In Vivo Imaging Beyond Hydrogen Bonding: π···π Stacking Directed Self-Assembly of Carboxylic Acid Clusters in the Gas Phase Sequence-Modulated Active Tripeptide Condensates for Tandem Catalysis Macromolecular Condensates as Tunable Scaffolds for Bio-Inspired Silica Hybrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1