Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-05 DOI:10.1002/anie.202501359
Xiaomeng Yu, Kang Zhou, Chang Liu, Junjie Li, Jing Ma, Lei Yan, Ziyang Guo, Yonggang Wang
{"title":"Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions","authors":"Xiaomeng Yu, Kang Zhou, Chang Liu, Junjie Li, Jing Ma, Lei Yan, Ziyang Guo, Yonggang Wang","doi":"10.1002/anie.202501359","DOIUrl":null,"url":null,"abstract":"Zinc-organic batteries, combining the low cost and high capacity of Zn anodes with the tunable and sustainable properties of organic cathodes, have garnered significant attention. Herein, we present a zinc-organic battery featuring a poly(benzoquinonyl sulfide) (PBQS) cathode, a Zn anode, and an N,N-dimethylformamide (DMF)-based electrolyte, which delivers a high capacity (200 mAh g-1), excellent rate capability, and an ultra-long cycle life (10,000 cycles) when tested with a low PBQS loading (2 mg cm-2). The charge storage mechanism in the PBQS cathode involves solvated Zn2+ adsorption and consequent Zn2+ coordination with PBQS companied by de-solvation process, as confirmed by in-situ FT-IR analysis. However, sluggish Zn2+ de-solvation leads to a loss of Zn2+ coordination capacity when tested with higher PBQS loading (8 mg cm-2) even at a low current density of 0.2 A g-1. Remarkably, the addition of 2% H2O to the DMF electrolyte incorporates 0.24 H2O into the primary solvation sheath of Zn2+, significantly facilitating the de-solvation process. As a result, the PBQS cathode (8 mg cm-2) retains its Zn2+ storage capacity when using the modified electrolyte. This approach offers a new strategy for improving the rate performance of organic electrodes, complementing existing conductivity enhancements.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"8 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-organic batteries, combining the low cost and high capacity of Zn anodes with the tunable and sustainable properties of organic cathodes, have garnered significant attention. Herein, we present a zinc-organic battery featuring a poly(benzoquinonyl sulfide) (PBQS) cathode, a Zn anode, and an N,N-dimethylformamide (DMF)-based electrolyte, which delivers a high capacity (200 mAh g-1), excellent rate capability, and an ultra-long cycle life (10,000 cycles) when tested with a low PBQS loading (2 mg cm-2). The charge storage mechanism in the PBQS cathode involves solvated Zn2+ adsorption and consequent Zn2+ coordination with PBQS companied by de-solvation process, as confirmed by in-situ FT-IR analysis. However, sluggish Zn2+ de-solvation leads to a loss of Zn2+ coordination capacity when tested with higher PBQS loading (8 mg cm-2) even at a low current density of 0.2 A g-1. Remarkably, the addition of 2% H2O to the DMF electrolyte incorporates 0.24 H2O into the primary solvation sheath of Zn2+, significantly facilitating the de-solvation process. As a result, the PBQS cathode (8 mg cm-2) retains its Zn2+ storage capacity when using the modified electrolyte. This approach offers a new strategy for improving the rate performance of organic electrodes, complementing existing conductivity enhancements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Self-optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media Achieving Room-Temperature Phosphorescence in Solution Phase from Carbon Dots Confined in Nanocrystals Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions Unlocking the Power of Photothermal Agents: A Universal Platform for Smart Immune NIR-Agonists for Precise Cancer Therapy Efficient Infrared-Detecting Organic Semiconductors Featuring a Tetraheterocyclic Core with Reduced Ionization Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1