Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-05 DOI:10.1002/anie.202501359
Xiaomeng Yu, Kang Zhou, Chang Liu, Junjie Li, Prof. Jing Ma, Lei Yan, Ziyang Guo, Prof. Yonggang Wang
{"title":"Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions","authors":"Xiaomeng Yu,&nbsp;Kang Zhou,&nbsp;Chang Liu,&nbsp;Junjie Li,&nbsp;Prof. Jing Ma,&nbsp;Lei Yan,&nbsp;Ziyang Guo,&nbsp;Prof. Yonggang Wang","doi":"10.1002/anie.202501359","DOIUrl":null,"url":null,"abstract":"<p>Zinc-organic batteries, combining the low cost and high capacity of Zn anodes with the tunable and sustainable properties of organic cathodes, have garnered significant attention. Herein, we present a zinc-organic battery featuring a poly(benzoquinonyl sulfide) (PBQS) cathode, a Zn anode, and an N,N-dimethylformamide (DMF)-based electrolyte, which delivers a high capacity (200 mAh g<sup>−1</sup>), excellent rate capability, and an ultra-long cycle life (10,000 cycles) when tested with a low PBQS loading (2 mg cm<sup>−2</sup>). The charge storage mechanism in the PBQS cathode involves solvated Zn<sup>2+</sup> adsorption and consequent Zn<sup>2+</sup> coordination with PBQS companied by de-solvation process, as confirmed by <i>in situ</i> FT-IR analysis. However, sluggish Zn<sup>2+</sup> de-solvation leads to a loss of Zn<sup>2+</sup> coordination capacity when tested with higher PBQS loading (8 mg cm<sup>−2</sup>) even at a low current density of 0.2 A g<sup>−1</sup>. Remarkably, the addition of 2 % H<sub>2</sub>O to the DMF electrolyte incorporates 0.24 H<sub>2</sub>O into the primary solvation sheath of Zn<sup>2+</sup>, significantly facilitating the de-solvation process. As a result, the PBQS cathode (8 mg cm<sup>−2</sup>) retains its Zn<sup>2+</sup> storage capacity when using the modified electrolyte. This approach offers a new strategy for improving the rate performance of organic electrodes, complementing existing conductivity enhancements.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 16","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-organic batteries, combining the low cost and high capacity of Zn anodes with the tunable and sustainable properties of organic cathodes, have garnered significant attention. Herein, we present a zinc-organic battery featuring a poly(benzoquinonyl sulfide) (PBQS) cathode, a Zn anode, and an N,N-dimethylformamide (DMF)-based electrolyte, which delivers a high capacity (200 mAh g−1), excellent rate capability, and an ultra-long cycle life (10,000 cycles) when tested with a low PBQS loading (2 mg cm−2). The charge storage mechanism in the PBQS cathode involves solvated Zn2+ adsorption and consequent Zn2+ coordination with PBQS companied by de-solvation process, as confirmed by in situ FT-IR analysis. However, sluggish Zn2+ de-solvation leads to a loss of Zn2+ coordination capacity when tested with higher PBQS loading (8 mg cm−2) even at a low current density of 0.2 A g−1. Remarkably, the addition of 2 % H2O to the DMF electrolyte incorporates 0.24 H2O into the primary solvation sheath of Zn2+, significantly facilitating the de-solvation process. As a result, the PBQS cathode (8 mg cm−2) retains its Zn2+ storage capacity when using the modified electrolyte. This approach offers a new strategy for improving the rate performance of organic electrodes, complementing existing conductivity enhancements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节锌离子溶剂化结构活化锌电池有机电极
锌有机电池将锌阳极的低成本和高容量与有机阴极的可调和可持续特性相结合,引起了人们的广泛关注。在此,我们提出了一种锌有机电池,该电池具有聚苯并醌酰硫化物(PBQS)阴极,Zn阳极和N,N-二甲基甲酰胺(DMF)基电解质,在低PBQS负载(2 mg cm-2)下测试时具有高容量(200 mAh g-1),出色的倍率能力和超长的循环寿命(10,000次循环)。原位FT-IR分析证实,PBQS阴极的电荷存储机制为溶剂化Zn2+吸附,并伴随脱溶剂化过程与PBQS配位。然而,即使在0.2 a g-1的低电流密度下,当PBQS负载较高(8 mg cm-2)时,缓慢的Zn2+脱溶剂也会导致Zn2+配位能力的损失。值得注意的是,在DMF电解质中加入2%的H2O,使0.24 H2O进入Zn2+的初级溶剂化鞘,显著促进了脱溶剂过程。结果表明,当使用改性电解质时,PBQS阴极(8 mg cm-2)保持了Zn2+的存储容量。这种方法为提高有机电极的速率性能提供了一种新的策略,补充了现有的电导率增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Synthetic Microbial Ecosystems for Stable Flow Biocatalysis The Nonadiabatic Nature of the Substituent Effects in Azobenzene Piezo-Activated Metal-Free Donor-Acceptor Photocatalytic Overall Water Splitting System Toward Highly-Efficient Simultaneous H2 and H2O2 Production Atomic‐Mesoscale Synergy in Amorphous Iridium Oxide Catalysts for Proton Exchange Membrane Water Electrolysis Practical Enantioselective Hydrogenation of Aryl Enamides Catalyzed by Cobalt‐Monodentate Phosphoramidites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1