Mutual Information-Optimized Steganalysis for Generative Steganography

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2025-02-04 DOI:10.1109/TIFS.2025.3539089
Mingzhi Hu;Hongxia Wang
{"title":"Mutual Information-Optimized Steganalysis for Generative Steganography","authors":"Mingzhi Hu;Hongxia Wang","doi":"10.1109/TIFS.2025.3539089","DOIUrl":null,"url":null,"abstract":"Coverless generative steganography is a highly secure method of information hiding. With the advent of the AI-generated content (AIGC) era, the widespread dissemination of generative content on the internet provides an excellent hiding environment for generative steganographic images. Generative steganographic images do not require the participation of carrier images, making existing steganalysis methods expired. However, there are currently no detection methods specifically targeting generative steganographic content. To address this gap, we propose a steganalysis method for generative steganographic images. Our approach focuses on the intrinsic differences between generative steganographic images and ordinary generative images. Through comparative analysis, we propose optimizing the detection model using mutual information estimation. We hypothesize about the distribution characteristics of steganographic signals and design a feature discrimination loss function to further guide the model’s optimization. In addition to designing a feature extraction network to extract features from different image regions, we also incorporate an image classification model pretrained on a large dataset to extract classification features for the final classification. Experimental results in various training and testing scenarios demonstrate that the proposed model not only possesses excellent detection capability but also exhibits reliable generalization compared to other models. Furthermore, we provide necessary descriptions and analysis to validate the rationale behind the network design.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1852-1865"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10872893/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Coverless generative steganography is a highly secure method of information hiding. With the advent of the AI-generated content (AIGC) era, the widespread dissemination of generative content on the internet provides an excellent hiding environment for generative steganographic images. Generative steganographic images do not require the participation of carrier images, making existing steganalysis methods expired. However, there are currently no detection methods specifically targeting generative steganographic content. To address this gap, we propose a steganalysis method for generative steganographic images. Our approach focuses on the intrinsic differences between generative steganographic images and ordinary generative images. Through comparative analysis, we propose optimizing the detection model using mutual information estimation. We hypothesize about the distribution characteristics of steganographic signals and design a feature discrimination loss function to further guide the model’s optimization. In addition to designing a feature extraction network to extract features from different image regions, we also incorporate an image classification model pretrained on a large dataset to extract classification features for the final classification. Experimental results in various training and testing scenarios demonstrate that the proposed model not only possesses excellent detection capability but also exhibits reliable generalization compared to other models. Furthermore, we provide necessary descriptions and analysis to validate the rationale behind the network design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Kullback-Liebler Divergence-Based Observer Design Against Sensor Bias Injection Attacks in Single-Output Systems Efficient and Privacy-Preserving Ride Matching over Road Networks against Malicious ORH server Secrecy Coding for the Binary Symmetric Wiretap Channel via Linear Programming Reliable Open-Set Network Traffic Classification Achieving Positive Rate of Covert Communications Covered by Randomly Activated Overt Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1