An immersive spatially consistent multi-modal augmented virtuality human-machine interface for telerobotic systems

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers in Industry Pub Date : 2025-02-05 DOI:10.1016/j.compind.2025.104260
Rebecca Schwenk, Shana Smith
{"title":"An immersive spatially consistent multi-modal augmented virtuality human-machine interface for telerobotic systems","authors":"Rebecca Schwenk,&nbsp;Shana Smith","doi":"10.1016/j.compind.2025.104260","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an immersive augmented virtuality (AV)-based human-machine interface (HMI) designed to enhance telepresence and operator performance in telerobotic systems. Traditional telerobotic systems often face limitations such as 2D representations of 3D environments, restricted fields of view, and reduced depth perception, all of which hinder operator effectiveness. Although extended reality and various augmentation technologies have been employed to create more intuitive teleoperations, prior research has largely overlooked the integration of spatially consistent video streams from remote sites, which significantly increases operators' mental workload. As a result, these systems struggled to manage dynamic changes at the remote site and lacked sufficient environmental context and an unlimited field of view for operators. This study addresses these limitations by augmenting the virtual replica of the remote environment with a real-time, spatially consistent video stream within the AV-based HMI, enabling operators to better understand dynamic changes at the remote site and enhancing both situational awareness and control precision during teleoperations. Additionally, 3D point clouds and haptic feedback are integrated to create a multi-modal interface that further improves operator perception and interaction with the remote environment. A user study comparing the immersive AV-based HMI with a multi-monocular HMI demonstrated significant improvements in task workload, system usability, spatial presence, and task completion times. Participant feedback further confirmed the system’s ability to improve operator performance.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"167 ","pages":"Article 104260"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525000259","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an immersive augmented virtuality (AV)-based human-machine interface (HMI) designed to enhance telepresence and operator performance in telerobotic systems. Traditional telerobotic systems often face limitations such as 2D representations of 3D environments, restricted fields of view, and reduced depth perception, all of which hinder operator effectiveness. Although extended reality and various augmentation technologies have been employed to create more intuitive teleoperations, prior research has largely overlooked the integration of spatially consistent video streams from remote sites, which significantly increases operators' mental workload. As a result, these systems struggled to manage dynamic changes at the remote site and lacked sufficient environmental context and an unlimited field of view for operators. This study addresses these limitations by augmenting the virtual replica of the remote environment with a real-time, spatially consistent video stream within the AV-based HMI, enabling operators to better understand dynamic changes at the remote site and enhancing both situational awareness and control precision during teleoperations. Additionally, 3D point clouds and haptic feedback are integrated to create a multi-modal interface that further improves operator perception and interaction with the remote environment. A user study comparing the immersive AV-based HMI with a multi-monocular HMI demonstrated significant improvements in task workload, system usability, spatial presence, and task completion times. Participant feedback further confirmed the system’s ability to improve operator performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
期刊最新文献
A decentralised approach to cyber-physical systems as a service: Managing shared access worldwide through blockchain standards On design of cognitive situation-adaptive autonomous mobile robotic applications Editorial Board Adaptive fault diagnosis of machining processes enabled by hybrid deep learning and incremental transfer learning A methodology for adaptive AI-based causal control: Toward an autonomous factory in solder paste printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1