Effects of Hydrogen Bonding Solvation by Diverse Fluorinated Bulky Alcohols on the Reaction Rate and Selectivity in Crown Ether Mediated Nucleophilic Fluorination in an Aprotic Solvent

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Organic & Inorganic Au Pub Date : 2024-11-28 DOI:10.1021/acsorginorgau.4c0008110.1021/acsorginorgau.4c00081
Eloah P. Ávila, Mauro V. de Almeida, Marcelo S. Valle and Josefredo R. Pliego*, 
{"title":"Effects of Hydrogen Bonding Solvation by Diverse Fluorinated Bulky Alcohols on the Reaction Rate and Selectivity in Crown Ether Mediated Nucleophilic Fluorination in an Aprotic Solvent","authors":"Eloah P. Ávila,&nbsp;Mauro V. de Almeida,&nbsp;Marcelo S. Valle and Josefredo R. Pliego*,&nbsp;","doi":"10.1021/acsorginorgau.4c0008110.1021/acsorginorgau.4c00081","DOIUrl":null,"url":null,"abstract":"<p >Solvent effects play a critical role in ionic chemical reactions and have been a research topic for a long time. The solvent molecules in the first solvation shell of the solute are the most important solvating species. Consequently, manipulation of the structure of this shell can be used to control the reactivity and selectivity of ionic reactions. In this work, we report extensive experimental and insightful computational studies of the effects of adding diverse fluorinated bulky alcohols with different solvation abilities to the fluorination reaction of alkyl bromides with potassium fluoride promoted by 18-crown-6. We found that adding a stoichiometric amount of these alcohols to the acetonitrile solution has an important effect on the kinetics and selectivity. The most effective alcohol was 2-trifluoromethyl-2-propanol (TBOH-F3), and the use of 3 equiv of this alcohol to fluorinate a primary alkyl bromide led to a 78% fluorination yield in just 6 h of reaction time at a mild temperature of 82 °C, with 8% of E2 yield. The more challenging secondary alkyl bromide substrate obtained 44% fluorination yield and 56% E2 yield at 18 h of reaction time. More fluorinated alcohols with six or more fluorine atoms have resulted in relatively acidic alcohols, leading to large amounts of the corresponding ethers of these alcohols as side products. The widely used hexafluoroisopropanol (HFIP) was the least effective one for monofluorination, indicating that both acidity and bulkiness are important features of the alcohols for promoting fluorination using KF salt. Nevertheless, the ether of HFIP can be easily formed with the substrate, generating a highly fluorinated ether product. Theoretical calculations predict Δ<i>G</i><sup>‡</sup> in close agreement with the experiments and explain the higher selectivity induced by the fluorinated bulky alcohols in relation to the use of crown ether alone.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"5 1","pages":"69–83 69–83"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.4c00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solvent effects play a critical role in ionic chemical reactions and have been a research topic for a long time. The solvent molecules in the first solvation shell of the solute are the most important solvating species. Consequently, manipulation of the structure of this shell can be used to control the reactivity and selectivity of ionic reactions. In this work, we report extensive experimental and insightful computational studies of the effects of adding diverse fluorinated bulky alcohols with different solvation abilities to the fluorination reaction of alkyl bromides with potassium fluoride promoted by 18-crown-6. We found that adding a stoichiometric amount of these alcohols to the acetonitrile solution has an important effect on the kinetics and selectivity. The most effective alcohol was 2-trifluoromethyl-2-propanol (TBOH-F3), and the use of 3 equiv of this alcohol to fluorinate a primary alkyl bromide led to a 78% fluorination yield in just 6 h of reaction time at a mild temperature of 82 °C, with 8% of E2 yield. The more challenging secondary alkyl bromide substrate obtained 44% fluorination yield and 56% E2 yield at 18 h of reaction time. More fluorinated alcohols with six or more fluorine atoms have resulted in relatively acidic alcohols, leading to large amounts of the corresponding ethers of these alcohols as side products. The widely used hexafluoroisopropanol (HFIP) was the least effective one for monofluorination, indicating that both acidity and bulkiness are important features of the alcohols for promoting fluorination using KF salt. Nevertheless, the ether of HFIP can be easily formed with the substrate, generating a highly fluorinated ether product. Theoretical calculations predict ΔG in close agreement with the experiments and explain the higher selectivity induced by the fluorinated bulky alcohols in relation to the use of crown ether alone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Organic & Inorganic Au
ACS Organic & Inorganic Au 有机化学、无机化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Issue Publication Information Issue Editorial Masthead Single-Ion-Conducting Polymer Electrolytes for Rechargeable Alkaline Ag–Zn Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1