How left-turning vehicles deal with conflicts at intersections: A driving behavior model based on relative motion risk quantification

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physica A: Statistical Mechanics and its Applications Pub Date : 2025-01-22 DOI:10.1016/j.physa.2025.130393
Jun Hua , Bin Li , Lin Wang , Guangquan Lu
{"title":"How left-turning vehicles deal with conflicts at intersections: A driving behavior model based on relative motion risk quantification","authors":"Jun Hua ,&nbsp;Bin Li ,&nbsp;Lin Wang ,&nbsp;Guangquan Lu","doi":"10.1016/j.physa.2025.130393","DOIUrl":null,"url":null,"abstract":"<div><div>Unprotected left turns at intersections in right-hand traffic are a critical factor affecting traffic safety. Traditional risk assessment indicators, which typically rely on vehicle relative positions, fall short in supporting yield/go decisions by left-turning drivers across different types of conflicts, and the corresponding driving behavior models struggle to capture the underlying behavioral mechanisms. To address these limitations, this paper introduces an improved risk assessment indicator based on risk field theory. By quantifying the relative motion risk between interactive vehicles, the proposed indicator offers a unified standard for intuitively determining whether a conflict has been resolved. Building on this, a Perception-decision-action behavioral framework, grounded in the preview-follower theory and risk homeostasis theory, is employed to model decision-making behaviors. This behavioral mechanism-driven model is validated through numerical simulations of vehicle trajectories, achieving a 92.59 % accuracy rate in replicating the decision-making behavior of left-turning vehicles, comparable to the performance of previous data-driven classification models. Furthermore, several cases are analyzed and discussed under different risk preferences and preview times, demonstrating that the model has potential for personalized trajectory planning. Overall, this paper provides a valuable reference model for enhancing intersection safety and advancing trajectory planning in autonomous driving systems.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"661 ","pages":"Article 130393"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125000457","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Unprotected left turns at intersections in right-hand traffic are a critical factor affecting traffic safety. Traditional risk assessment indicators, which typically rely on vehicle relative positions, fall short in supporting yield/go decisions by left-turning drivers across different types of conflicts, and the corresponding driving behavior models struggle to capture the underlying behavioral mechanisms. To address these limitations, this paper introduces an improved risk assessment indicator based on risk field theory. By quantifying the relative motion risk between interactive vehicles, the proposed indicator offers a unified standard for intuitively determining whether a conflict has been resolved. Building on this, a Perception-decision-action behavioral framework, grounded in the preview-follower theory and risk homeostasis theory, is employed to model decision-making behaviors. This behavioral mechanism-driven model is validated through numerical simulations of vehicle trajectories, achieving a 92.59 % accuracy rate in replicating the decision-making behavior of left-turning vehicles, comparable to the performance of previous data-driven classification models. Furthermore, several cases are analyzed and discussed under different risk preferences and preview times, demonstrating that the model has potential for personalized trajectory planning. Overall, this paper provides a valuable reference model for enhancing intersection safety and advancing trajectory planning in autonomous driving systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
期刊最新文献
A new car-following model considering the driver's dynamic reaction time and driving visual angle on the slope A constitutive model for slidable cross-links mediated dual cross-linked polymers to understand coupling and hysteresis of dual cross-links Physics-Informed Neural Networks with hybrid sampling for stationary Fokker–Planck–Kolmogorov Equation Dynamic magnetic properties of the mixed-spin (5/2, 2) Ising model with an MBene-like structure Constrained volume-difference site percolation model on the square lattice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1