Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-12-01 DOI:10.3866/PKU.WHXB202407023
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang
{"title":"Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries","authors":"Jianbao Mei ,&nbsp;Bei Li ,&nbsp;Shu Zhang ,&nbsp;Dongdong Xiao ,&nbsp;Pu Hu ,&nbsp;Geng Zhang","doi":"10.3866/PKU.WHXB202407023","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-ion batteries (SIBs) are widely studied for energy storage applications, but achieving cathode materials with balanced high energy density, stability, and fast charge/discharge performance remains a key challenge. In this study, we successfully synthesized a series of NASICON-type Na<sub>3.5−<em>x</em></sub>Mn<sub>0.5</sub>V<sub>1.5−<em>x</em></sub>Zr<sub><em>x</em></sub>(PO<sub>4</sub>)<sub>3</sub>/C, incorporating Mn, V, and Zr to investigate their impact on electrochemical performance. By introducing Zr alongside Mn and V, we developed a novel strategy to activate V<sup>4+</sup>/V<sup>5+</sup> redox reactions, achieving high energy density. Moreover, this substitution promotes Na-ion migration by widening the migration pathways and generating additional Na vacancies, which greatly enhances electrode reaction kinetics and boosts overall performance. Na<sub>3.4</sub>Mn<sub>0.5</sub>V<sub>1.4</sub>Zr<sub>0.1</sub>(PO<sub>4</sub>)<sub>3</sub>/C demonstrates superior stability, retaining 90% of its capacity after 800 cycles, and delivers high-rate performance (84 mAh∙g<sup>−1</sup> at 20<em>C</em>), significantly outperforming pristine Na<sub>3.5</sub>Mn<sub>0.5</sub>V<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub>/C. These advancements highlight a potential approach for developing efficient and sustainable SIBs.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (80KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2407023"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001838","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) are widely studied for energy storage applications, but achieving cathode materials with balanced high energy density, stability, and fast charge/discharge performance remains a key challenge. In this study, we successfully synthesized a series of NASICON-type Na3.5−xMn0.5V1.5−xZrx(PO4)3/C, incorporating Mn, V, and Zr to investigate their impact on electrochemical performance. By introducing Zr alongside Mn and V, we developed a novel strategy to activate V4+/V5+ redox reactions, achieving high energy density. Moreover, this substitution promotes Na-ion migration by widening the migration pathways and generating additional Na vacancies, which greatly enhances electrode reaction kinetics and boosts overall performance. Na3.4Mn0.5V1.4Zr0.1(PO4)3/C demonstrates superior stability, retaining 90% of its capacity after 800 cycles, and delivers high-rate performance (84 mAh∙g−1 at 20C), significantly outperforming pristine Na3.5Mn0.5V1.5(PO4)3/C. These advancements highlight a potential approach for developing efficient and sustainable SIBs.
  1. Download: Download high-res image (80KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar–driven antibiotics photodegradation Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity Efficient capacitive desalination over NCQDs decorated FeOOH composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1