Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-12-01 DOI:10.3866/PKU.WHXB202407021
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu
{"title":"Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction","authors":"Yuejiao An ,&nbsp;Wenxuan Liu ,&nbsp;Yanfeng Zhang ,&nbsp;Jianjun Zhang ,&nbsp;Zhansheng Lu","doi":"10.3866/PKU.WHXB202407021","DOIUrl":null,"url":null,"abstract":"<div><div>S-scheme heterojunctions can preserve strong redox capacity on the basis of achieving spatial separation of photogenerated carriers. Therefore, a deep comprehension of the photoinduced charge transfer dynamics in S-scheme heterostructures is vital to enhancing photocatalytic properties. Herein, SnO<sub>2</sub>/BiOBr S-scheme heterojunctions with tight contact are fabricated with <em>in situ</em> hydrothermal method. The optimal SnO<sub>2</sub>/BiOBr exhibits excellent photocatalytic performance for CO<sub>2</sub> reduction, with yields of CO and CH<sub>4</sub> of 345.7 and 6.7 μmol∙g<sup>–1</sup>∙h<sup>–1</sup>, which are 5.6 and 3.7 times higher than those of the original BiOBr. The photoinduced charge transfer mechanism and dynamics of SnO<sub>2</sub>/BiOBr S-scheme heterostructure are characterized by <em>in situ</em> X-ray photoelectron spectrum (XPS) and femtosecond transient absorption spectroscopy (fs-TA). A new fitted lifetime of photogenerated carriers are observed, which could be attributed to interfacial electron transfer of S-scheme heterojunction, further illustrating an ultrafast transfer channel for photoelectrons from SnO<sub>2</sub> conduction band to BiOBr valence band. As a result, the powerful reduced electrons in BiOBr conduction band and the powerful oxidation holes in SnO<sub>2</sub> valence band are retained. This work provides profound comprehension of photoinduced charge transfer mechanism of S-scheme heterojunction.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (85KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 12","pages":"Article 2407021"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001863","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

S-scheme heterojunctions can preserve strong redox capacity on the basis of achieving spatial separation of photogenerated carriers. Therefore, a deep comprehension of the photoinduced charge transfer dynamics in S-scheme heterostructures is vital to enhancing photocatalytic properties. Herein, SnO2/BiOBr S-scheme heterojunctions with tight contact are fabricated with in situ hydrothermal method. The optimal SnO2/BiOBr exhibits excellent photocatalytic performance for CO2 reduction, with yields of CO and CH4 of 345.7 and 6.7 μmol∙g–1∙h–1, which are 5.6 and 3.7 times higher than those of the original BiOBr. The photoinduced charge transfer mechanism and dynamics of SnO2/BiOBr S-scheme heterostructure are characterized by in situ X-ray photoelectron spectrum (XPS) and femtosecond transient absorption spectroscopy (fs-TA). A new fitted lifetime of photogenerated carriers are observed, which could be attributed to interfacial electron transfer of S-scheme heterojunction, further illustrating an ultrafast transfer channel for photoelectrons from SnO2 conduction band to BiOBr valence band. As a result, the powerful reduced electrons in BiOBr conduction band and the powerful oxidation holes in SnO2 valence band are retained. This work provides profound comprehension of photoinduced charge transfer mechanism of S-scheme heterojunction.
  1. Download: Download high-res image (85KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar–driven antibiotics photodegradation Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity Efficient capacitive desalination over NCQDs decorated FeOOH composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1