{"title":"Structural stability and high-temperature thermoelectric performance of LiYPdSn quaternary heusler compound","authors":"Jaspal Singh , Kulwinder Kaur , Megha Goyal , Yuhit Gupta , Aadil Fayaz Wani , Tavneet Kaur","doi":"10.1016/j.ssc.2024.115784","DOIUrl":null,"url":null,"abstract":"<div><div>In this research work, the electronic, mechanical, and thermoelectric properties of the recently discovered Li-based quaternary Heusler compound i.e. LiYPdSn are explored with the help of density functional theory and the Boltzmann transport equations. The LiYPdSn alloy has an indirect band gap of 0.41 eV that confirming its p-type semiconducting features. This material shows the mechanical and dynamical stability along with a maximum recorded ZT (Figure of Merit) of 0.52 at 1200K. The electrical conductivity i.e. ease of electric propagation is calculated as 4.43 × 10<sup>6</sup> Ω<sup>−1</sup> m<sup>−1</sup> at 600K for the p-type doping region, while in the n-type doping region, the maximum recorded value is 2.8 × 10<sup>6</sup> Ω<sup>−1</sup> m<sup>−1</sup>, similarly the leading thermoelectric performance i.e. Seebeck coefficient with a maximum value of 531.14 μV/K at 300K, declaring that its properties are awaking the interesting research perspective in future. The paper seems to be an outlet of various research properties and announces the presenting material to have valuable thermoelectric performance and hence the potential applications to manufacture the wired or rolled structural thermoelectric modules in the high-temperature regions.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"397 ","pages":"Article 115784"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003612","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In this research work, the electronic, mechanical, and thermoelectric properties of the recently discovered Li-based quaternary Heusler compound i.e. LiYPdSn are explored with the help of density functional theory and the Boltzmann transport equations. The LiYPdSn alloy has an indirect band gap of 0.41 eV that confirming its p-type semiconducting features. This material shows the mechanical and dynamical stability along with a maximum recorded ZT (Figure of Merit) of 0.52 at 1200K. The electrical conductivity i.e. ease of electric propagation is calculated as 4.43 × 106 Ω−1 m−1 at 600K for the p-type doping region, while in the n-type doping region, the maximum recorded value is 2.8 × 106 Ω−1 m−1, similarly the leading thermoelectric performance i.e. Seebeck coefficient with a maximum value of 531.14 μV/K at 300K, declaring that its properties are awaking the interesting research perspective in future. The paper seems to be an outlet of various research properties and announces the presenting material to have valuable thermoelectric performance and hence the potential applications to manufacture the wired or rolled structural thermoelectric modules in the high-temperature regions.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.