{"title":"Study on doping modification of 4H-SiC and its effect on molecular adsorption of SiC2","authors":"Hongyu Ma , Ning Gu","doi":"10.1016/j.ssc.2024.115811","DOIUrl":null,"url":null,"abstract":"<div><div>SiC<sub>2</sub> molecules are one of the primary gas-phase components during the Physical vapor transport (PVT) growth of 4H-SiC single crystals [1]. At present, SiC crystals are mainly divided into three types: intrinsic, N-doped and Al-doped. This paper constructs intrinsic, N-doped, and Al-doped systems of 4H-SiC, using the (000–1) plane as the adsorption surface. Through Density functional theory (DFT) methods, the adsorption energy was calculated, revealing that the adsorption is chemical in nature, with the aluminum-doped system being the most stable. The bonding information obtained, including the covalency and bond lengths, indicates that SiC<sub>2</sub> molecules primarily form C-C covalent bonds with the silicon carbide surface, playing a major role in adsorption stability. Additionally, charge transfer between SiC<sub>2</sub> molecules and the silicon carbide system indicates the presence of electrostatic interactions, which play a secondary role in adsorption stability.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"397 ","pages":"Article 115811"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003880","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
SiC2 molecules are one of the primary gas-phase components during the Physical vapor transport (PVT) growth of 4H-SiC single crystals [1]. At present, SiC crystals are mainly divided into three types: intrinsic, N-doped and Al-doped. This paper constructs intrinsic, N-doped, and Al-doped systems of 4H-SiC, using the (000–1) plane as the adsorption surface. Through Density functional theory (DFT) methods, the adsorption energy was calculated, revealing that the adsorption is chemical in nature, with the aluminum-doped system being the most stable. The bonding information obtained, including the covalency and bond lengths, indicates that SiC2 molecules primarily form C-C covalent bonds with the silicon carbide surface, playing a major role in adsorption stability. Additionally, charge transfer between SiC2 molecules and the silicon carbide system indicates the presence of electrostatic interactions, which play a secondary role in adsorption stability.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.