{"title":"Signatures of topology in generic transport measurements for Rarita–Schwinger–Weyl semimetals","authors":"Ipsita Mandal , Shreya Saha , Rahul Ghosh","doi":"10.1016/j.ssc.2024.115799","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate how the signatures of the topological properties of the bandstructures for nodal-point semimetals are embedded in the response coefficients, arising in two distinct experimental set-ups, by taking the Rarita–Schwinger–Weyl (RSW) semimetal as an example. The first scenario involves the computation of third-rank tensors representing second-order response coefficients, relating the charge/thermal current densities to the combined effects of the gradient of the chemical potential and an external electric field/temperature gradient. On the premises that internode scatterings can be ignored, the relaxation-time approximation leads to a quantized value for the nonvanishing components of each of these nonlinear response tensors, characterizing a single untilted RSW node. Furthermore, the final expressions turn out to be insensitive to the specific values of the chemical potential and the temperature. The second scenario involves computing the magnetoelectric conductivity under the action of collinear electric (<span><math><mi>E</mi></math></span>) and magnetic (<span><math><mi>B</mi></math></span>) fields, representing a planar Hall set-up. In particular, our focus is in bringing out the dependence of the linear-in-<span><math><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow></math></span> parts of the conductivity tensor on the intrinsic topological properties of the bandstructure, which are nonvanishing only in the presence of a nonzero tilt in the energy spectrum.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"397 ","pages":"Article 115799"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003764","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate how the signatures of the topological properties of the bandstructures for nodal-point semimetals are embedded in the response coefficients, arising in two distinct experimental set-ups, by taking the Rarita–Schwinger–Weyl (RSW) semimetal as an example. The first scenario involves the computation of third-rank tensors representing second-order response coefficients, relating the charge/thermal current densities to the combined effects of the gradient of the chemical potential and an external electric field/temperature gradient. On the premises that internode scatterings can be ignored, the relaxation-time approximation leads to a quantized value for the nonvanishing components of each of these nonlinear response tensors, characterizing a single untilted RSW node. Furthermore, the final expressions turn out to be insensitive to the specific values of the chemical potential and the temperature. The second scenario involves computing the magnetoelectric conductivity under the action of collinear electric () and magnetic () fields, representing a planar Hall set-up. In particular, our focus is in bringing out the dependence of the linear-in- parts of the conductivity tensor on the intrinsic topological properties of the bandstructure, which are nonvanishing only in the presence of a nonzero tilt in the energy spectrum.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.